Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

ATM serine/threonine kinase OKDB#: 106
 Symbols: ATM Species: human
 Synonyms: AT1, ATA, ATC, ATD, ATE, ATDC, TEL1, TELO1  Locus: 11q22.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Ataxia-telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar ataxia, telangiectases, immune defects, and a predisposition to malignancy. Chromosomal breakage is a feature. AT cells are abnormally sensitive to killing by ionizing radiation (IR), and abnormally resistant to inhibition of DNA synthesis by ionizing radiation.//////The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair. Lange J et al. (2016) Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.//////////////////

NCBI Summary: The protein encoded by this gene belongs to the PI3/PI4-kinase family. This protein is an important cell cycle checkpoint kinase that phosphorylates; thus, it functions as a regulator of a wide variety of downstream proteins, including tumor suppressor proteins p53 and BRCA1, checkpoint kinase CHK2, checkpoint proteins RAD17 and RAD9, and DNA repair protein NBS1. This protein and the closely related kinase ATR are thought to be master controllers of cell cycle checkpoint signaling pathways that are required for cell response to DNA damage and for genome stability. Mutations in this gene are associated with ataxia telangiectasia, an autosomal recessive disorder. [provided by RefSeq, Aug 2010]
General function Cell death/survival, Cell cycle regulation, DNA Replication, Enzyme, Transferase
Comment ATM, the gene mutated in the inherited human disease ataxia-telangiectasia, is a member of a family of kinases involved in DNA metabolism and cell-cycle checkpoint control. //////////The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion. Ganesan S et al. (2015) Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fisher 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ±60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity.//////////////////
Cellular localization Cytoplasmic, Nuclear
Comment
Ovarian function Oogenesis, Oocyte growth, Oocyte maturation
Comment Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. Quek H et al. (2016) Mutations in the ataxia-telangiectasia (A-T)-mutated (ATM) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm-mutant rats (Atm(L2262P/L2262P)) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm(+/+) Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of Atm(L2262P/L2262P) rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T .////////////////// Barlow et al propose a model in which ATM acts to monitor meiosis by participation in the regulation or surveillance of meiotic progression, similar to its role as a monitor of mitotic cell cycle progression. [Di Giacomo M, et al reported distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Defects in meiotic recombination in many organisms result in arrest because of activation of a meiotic checkpoint(s). The proximal defect that triggers this checkpoint in mammalian germ cells is not understood, but it has been suggested to involve either the presence of DNA damage in the form of unrepaired recombination intermediates or defects in homologous chromosome pairing and synapsis independent of DNA damage per se. To distinguish between these possibilities in the female germ line, we compared mouse oocyte development in a mutant that fails to form the double-strand breaks (DSBs) that initiate meiotic recombination (Spo11(-/-)) to mutants with defects in processing DSBs when they are formed (Dmc1(-/-) and Msh5(-/-)), and we examined the epistasis relationships between these mutations. Absence of DSB formation caused a partial defect in follicle formation, whereas defects in DSB repair caused earlier and more severe meiotic arrest, which could be suppressed by eliminating DSB formation. Therefore, our analysis reveals that there are both DNA-damage-dependent and -independent responses to recombination errors in mammalian oocytes. By using these findings as a paradigm, we also examined oocyte loss in mutants lacking the DNA-damage checkpoint kinase ATM. The absence of ATM caused defects in folliculogenesis that were similar to those in Dmc1 mutants and that could be suppressed by Spo11 mutation, implying that oocyte death in Atm-deficient animals is a response to defective DSB repair.
Expression regulated by
Comment Ataxia Telangiectasia Mutated coordinates the ovarian DNA repair and atresia-initiating response to phosphoramide mustard. Clark KL et al. (2019) Ataxia telangiectasia mutated (ATM) protein recognizes and repairs DNA double strand breaks (DSB) through activation of cell cycle checkpoints and DNA repair proteins. Atm gene mutations increase female reproductive cancer risk. Phosphoramide mustard (PM) induces ovarian DNA damage and destroys primordial follicles, and pharmacological ATM inhibition prevents PM-induced follicular depletion. Wild-type (WT) C57BL/6 or Atm+/- mice were dosed once intraperitoneally with sesame oil (95%) or PM (25 mg/kg) in the proestrus phase of the estrous cycle and ovaries harvested 3 days thereafter. Atm+/- mice spent ~ 25% more time in diestrus phase than WT. LC-MS/MS on ovarian protein was performed and bioinformatically analyzed. Relative to WT, Atm+/- mice had 64 and 243 proteins increased or decreased in abundance, respectively. In WT mice, PM increased 162 and decreased 20 proteins. In Atm+/- mice, 173 and 37 proteins were increased and decreased, respectively, by PM. Exportin-2 (XPO2) was localized to granulosa cells of all follicle stages and was 7.2-fold greater in Atm+/- than WT mice. Cytoplasmic FMR1-interacting protein 1 (CYFIP1) was 6.8-fold lower in Atm+/- mice and was located in the surface epithelium with apparent translocation to the ovarian medulla post-PM exposure. PM induced γH2AX, but fewer γH2AX positive foci were identified in Atm+/- ovaries. Similarly, cleaved caspase-3 was lower in the Atm+/- PM-treated, relative to WT mice. These findings support ATM involvement in ovarian DNA repair and suggest that ATM functions to regulate ovarian atresia.//////////////////
Ovarian localization Oocyte
Comment Barlow et al. (1998) reported that ATM protein is normally present at high levels primarily in ova cytoplasm of developing ovarian follicles, and in the nucleus of spermatogonia and to a lesser extent in spermatoctyes, but without localization to the synaptonemal complex.
Follicle stages Primordial, Primary, Secondary, Antral, Preovulatory
Comment
Phenotypes POF (premature ovarian failure)
Mutations 3 mutations

Species: human
Mutation name: None
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Miller et al. (1967) reviewed the literature on ovarian failure in ataxia-telangiectasia.

Species: mouse
Mutation name: None
type: null mutation
fertility: infertile - ovarian defect
Comment: Xu et al. (1996) reported that the homozygous mutant (ATM-/-) mice are viable, growth-retarded, and infertile. The infertility of ATM-/- mice results from meiotic failure. Meiosis is arrested at the zygotene/pachytene stage of prophase I as a result of abnormal chromosomal synapsis and subsequent chromosome fragmentation. Immune defects also are evident in ATM-/- mice, including reduced numbers of B220+CD43- pre-B cells, thymocytes, and peripheral T cells, as well as functional impairment of T-cell-dependent immune responses.

Species: mouse
Mutation name: None
type: null mutation
fertility: infertile - ovarian defect
Comment: Infertility is a common feature of the human disorder ataxia-telangiectasia and Atm-deficient mice are completely infertile. Barlow et al. (1998) examined meiotic cells in Atm-deficient mice during development. Spermatocyte degeneration begins between postnatal days 8 and 16.5, soon after entry into prophase I of meiosis, while oocytes degenerate late in embryogenesis prior to dictyate arrest.

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Aug. 31, 1999, midnight by: Hsueh   email:
home page:
last update: Aug. 23, 2019, 3:24 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form