doublesex and mab-3 related transcription factor 1 | OKDB#: 1060 |
Symbols: | DMRT1 | Species: | human | ||
Synonyms: | DMT1, CT154 | Locus: | 9p24.3 in Homo sapiens |
For retrieval of Nucleotide and Amino Acid sequences please go to:
OMIM
Entrez Gene
Mammalian Reproductive Genetics Endometrium Database Resource Orthologous Genes UCSC Genome Browser GEO Profiles new! Amazonia (transcriptome data) new! R-L INTERACTIONS MGI |
General Comment |
The signal for somatic sex determination in mammals, Caenorhabditis elegans and Drosophila melanogaster is chromosomal, but the overall mechanisms do not appear to be conserved between the phyla. However it has been found quite recently that the C.
elegans sex-determining gene Mab-3 contains a domain highly homologous to the Drosophila sex-determining gene doublesex (dsx) and shares a similar role. These
data suggest that at least some aspects of the regulation of sex determination might be
conserved. In humans, a doublesex-related gene (DMRT1) was identified at less than 30 kb from the critical region for sex reversal on chromosome 9p24 (TD9).
NCBI Summary: This gene is found in a cluster with two other members of the gene family, having in common a zinc finger-like DNA-binding motif (DM domain). The DM domain is an ancient, conserved component of the vertebrate sex-determining pathway that is also a key regulator of male development in flies and nematodes. This gene exhibits a gonad-specific and sexually dimorphic expression pattern. Defective testicular development and XY feminization occur when this gene is hemizygous. [provided by RefSeq, Jul 2008] |
||||
General function | Nucleic acid binding, DNA binding, Transcription factor | ||||
Comment | Raymond CS, et al 2000 reported that Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Shan Z, et al 2000 reported sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds. Raymond CS, et al 1999 reported the expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Sex-determining mechanisms are highly variable between phyla. Only one example has been found in which structurally and functionally related genes control sex determination in different phyla: the sexual regulators mab-3 of Caenorhabditis elegans and doublesex of Drosophila both encode proteins containing the DM domain, a novel DNA-binding motif. These two genes control similar aspects of sexual development, and the male isoform of DSX can substitute for MAB-3 in vivo, suggesting that the two proteins are functionally related. DM domain proteins may also play a role in sexual development of vertebrates. A human gene encoding a DM domain protein, DMRT1, is expressed only in the testis in adults and maps to distal 9p24.3, a short interval that is required for testis development. Earlier in development murine Dmrt1 mRNA is expressed exclusively in the genital ridge of early XX and XY embryos. Thus Dmrt1 and Sry are the only regulatory genes known to be expressed exclusively in the mammalian genital ridge prior to sexual differentiation. Expression becomes XY-specific and restricted to the seminiferous tubules of the testis as gonadogenesis proceeds, and both Sertoli cells and germ cells express Dmrt1. De Grandi A, et al 2000 isolated DMRT1 mouse homologue (Dmrt1) and analysed its expression pattern. The gene is expressed in the genital ridges of both sexes during the sex-determining switch and it shows male/female dimorphism at late stages of sex differentiation. Analysis of meiosis regulators in human gonads: a sexually dimorphic spatio-temporal expression pattern suggests involvement of DMRT1 in meiotic entry. J?sen A et al. The mitosis-meiosis switch is a key event in the differentiation of germ cells. In humans, meiosis is initiated in fetal ovaries, whereas in testes meiotic entry is inhibited until puberty. The purpose of this study was to examine the expression pattern of meiosis regulators in human gonads and to investigate a possible role of DMRT1 in the regulation of meiotic entry. The expression pattern of DMRT1, STRA8, SCP3, DMC1, NANOS3, CYP26B1 and NANOS2 was investigated by RT-PCR and immunohistochemistry in a series of human testis samples from fetal life to adulthood, and in fetal ovaries. DMRT1 was expressed in testes throughout development but with marked spatio-temporal changes. At the early fetal period of 8-20 gestational weeks (GW) and at infantile mini-puberty, DMRT1 was predominantly expressed in Sertoli cells, whereas at later stages of gestation (22-40 GW), during childhood and in post-pubertal testes, DMRT1 was most abundant in spermatogonia, except in the A-dark type. In fetal ovaries, DMRT1 was detected in oogonia and oocytes until 20 GW, but was completely down-regulated following meiotic entry. STRA8, SCP3 and DMC1 were expressed mainly in oocytes and spermatogonia in accordance with their role in initiation and progression of meiosis. The putative meiosis inhibitors, CYP26B1 and NANOS2, were primarily expressed in Leydig cells and spermatocytes, respectively. In conclusion, the expression pattern of the investigated meiotic regulators is largely conserved in the human gonads compared with rodents, but with some minor differences, such as a stable expression of CYP26B1 in human fetal ovaries. The sexually dimorphic expression pattern of DMRT1 indicates a similar role in the mitosis-meiosis switch in human gonads as previously demonstrated in mice. The biological importance of the changes in expression of DMRT1 in Sertoli cells remains to be established, but it is consistent with DMRT1 reinforcing the inhibition of meiosis in the testis. | ||||
Cellular localization | Nuclear | ||||
Comment | |||||
Ovarian function | Follicle endowment, Germ cell development, Oogenesis | ||||
Comment | DMRT1 promotes oogenesis by transcriptional activation of Stra8 in the mammalian fetal ovary. Krentz AD et al. Dmrt1 belongs to the DM domain gene family of conserved sexual regulators. In the mouse Dmrt1 is expressed in the genital ridge (the gonadal primordium) in both sexes and then becomes testis-specific shortly after sex determination. The essential role of DMRT1 in testicular differentiation is well established, and includes transcriptional repression of the meiotic inducer Stra8. However Dmrt1 mutant females are fertile and the role of Dmrt1 in the ovary has not been studied. Here we show in the mouse that most Dmrt1 mutant germ cells in the fetal ovary have greatly reduced expression of STRA8, and fail to properly localize SYCP3 and ?H2AX during meiotic prophase. Lack of DMRT1 in the fetal ovary results in the formation of many fewer primordial follicles in the juvenile ovary, although these are sufficient for fertility. Genome-wide chromatin immunoprecipitiation (ChIP-chip) and quantitative ChIP (qChIP) combined with mRNA expression profiling suggests that transcriptional activation of Stra8 in fetal germ cells is the main function of DMRT1 in females, and that this regulation likely is direct. Thus DMRT1 controls Stra8 sex-specifically, activating it in the fetal ovary and repressing it in the adult testis. | ||||
Expression regulated by | |||||
Comment | Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. Krentz AD et al. Dmrt1 (doublesex and mab-3 related transcription factor (1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some variability in genetic background in these crosses, this result is consistent with previous genetic mapping of teratoma susceptibility loci to the region containing Gfra1. Using Nanos3-cre we also uncovered a strong genetic interaction between Dmrt1 and Nanos3, suggesting parallel functions for these two genes in fetal germ cells. Finally, we used chromatin immunoprecipitation (ChIP-seq) analysis to identify a number of potentially direct DMRT1 targets. This analysis suggested that DMRT1 controls pluripotency via transcriptional repression of Esrrb, Nr5a2/Lrh1, and Sox2. Given the strong evidence for involvement of DMRT1 in human TGCT, the downstream genes and pathways identified in this study provide potentially useful candidates for roles in the human disease. | ||||
Ovarian localization | Primordial Germ Cell, Oocyte, Granulosa | ||||
Comment | Doublesex and mab3 related transcript (DMRT1) was identified as a candidate gene for human 9p24.3 associated sex reversal. DMRT1 orthologues have highly conserved roles in sexual differentiation from flies and worms to humans. A DMRT1 orthologue was isolated from a marsupial, the tammar wallaby Macropus eugenii. The wallaby gene is highly conserved with other vertebrate DMRT1 genes, especially within the P/S and DM domains. It is expressed in the differentiating testis from the late fetus, during pouch life and in the adult. As in eutherian mammals, DMRT1 protein was localized in the germ cells and the Sertoli cells of the testis, but in addition it was detected in the Leydig cells, peri-tubular myoid cells and within the acrosome of the sperm heads. DMRT1 protein was also detected in the fetal and adult ovary pre-granulosa, granulosa and germ cells. Similarly, we also detected DMRT1 in the granulosa cells of all developing follicles in the adult mouse ovary. This is the first report of DMRT1 expression in the adult mammalian ovary PAsk et al , and suggests a wider role for this gene in mammals, in both the testis and ovarian function. Marchand O et al 2000 reported DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. To gain insight on its implication for fish gonadal differentiation, the authors cloned a DMRT1 homologue in the rainbow trout, Oncorhynchus mykiss (rtDMRT1), and showed that this gene is expressed during testicular differentiation, but not during ovarian differentiation. After 10 days of steroid treatment, expression was shown to be decreased in estrogen-treated male differentiating gonads but not to be restored in androgen-treated differentiating female gonads. This clearly reinforces the hypothesis of an important implication for DMRT1 in testicular differentiation in all vertebrates. In the adults a single 1.5 kb transcript was detected by Northern blot analysis in the testis, and its expression was found to be sustained throughout spermatogenesis and declined at the end of spermatogenesis (stage VI). Along with this expression in the testis we also detected by reverse transcriptase-polymerase chain reaction a slight expression in the ovary. The authors also obtained new DM-domain homologous sequences in fish, and their analysis suggest that at least four different genes bearing 'DM-domain' (DMRT genes) exist in fish just as in all vertebrate genomes. | ||||
Follicle stages | |||||
Comment | |||||
Phenotypes | |||||
Mutations |
7 mutations
Species: human
Species: mouse
Species: mouse
Species: mouse
Species: None
Species: mouse
Species: mouse
|
||||
Genomic Region | show genomic region | ||||
Phenotypes and GWAS | show phenotypes and GWAS | ||||
Links |
|
created: | Nov. 8, 2000, 10:14 a.m. | by: |
hsueh email:
home page: |
last update: | Oct. 3, 2018, 10:47 a.m. | by: | hsueh email: |
Click here to return to gene search form