Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

PTK2 protein tyrosine kinase 2 OKDB#: 1260
 Symbols: PTK2 Species: human
 Synonyms: FAK, FADK, FAK1, FRNK, pp125FAK, FOCAL ADHESION KINASE, FAK| FOCAL ADHESION KINASE 1, FAK1|  Locus: 8q24.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Focal adhesion kinase, also known as cytoplasmic protein-tyrosine kinase (PTK2), which lacks any significant homology with other kinases. It concentrates in the focal adhesions that form between cells growing in the presence of extracellular matrix constituents, such as fibronectin.

NCBI Summary: This gene encodes a cytoplasmic protein tyrosine kinase which is found concentrated in the focal adhesions that form between cells growing in the presence of extracellular matrix constituents. The encoded protein is a member of the FAK subfamily of protein tyrosine kinases but lacks significant sequence similarity to kinases from other subfamilies. Activation of this gene may be an important early step in cell growth and intracellular signal transduction pathways triggered in response to certain neural peptides or to cell interactions with the extracellular matrix. Several transcript variants encoding different isoforms have been found for this gene, but the full-length natures of only three of them have been determined. [provided by RefSeq]
General function Intracellular signaling cascade
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Follicle development, Cumulus expansion, Follicle atresia, Oogenesis, Oocyte maturation
Comment Expression of focal adhesion kinase in mouse cumulus-oocyte complexes, and effect of phosphorylation at Tyr397 on cumulus expansion. Ohtake J et al. (2015) We investigated the expression of focal adhesion kinase (FAK) in mouse cumulus-oocyte complexes (COCs), as well as the role of FAK phosphorylation at Tyr397 during oocyte maturation. The effect of inhibiting FAK phosphorylation at Tyr397 during in vitro maturation (IVM) on subsequent fertilization and preimplantation embryo development was also examined. Western blotting analyses revealed that total and Tyr397-phosphorylated FAK were expressed in vivo in both cumulus cells and oocytes. Immunocytochemical studies localized this kinase throughout the cytoplasm of cumulus cells and oocytes; in particular, Tyr397-phosphorylated FAK tended to accumulate in regions where cumulus cells contact each other. Interestingly, the in vivo level of Tyr397 phosphorylation in cumulus cells was significantly lower after compared to before cumulus expansion. Addition of FAK inhibitor 14, which specifically blocks phosphorylation at Tyr397, stimulated oocyte meiotic maturation and cumulus expansion during IVM in the absence of follicle-stimulating hormone (FSH). Reverse-transcriptase PCR showed that the mRNA expression of hyaluronan synthase 2 (Has2), a marker of cumulus expansion, was significantly induced in cumulus cells. Subsequent in vitro fertilization and culture showed that more oocytes developed to the blastocyst stage when they were treated with FAK inhibitor 14 during IVM, although the blastocyst total cell number was lower than in oocytes stimulated with FSH. These results indicate that FAK is involved in the maturation of COCs; specifically, phosphorylation at Tyr397 may regulate cumulus expansion via the expression of Has2 mRNA in cumulus cells, which could affect the developmental competence of oocytes. Mol. Reprod. Dev. 2015. © 2015 Wiley Periodicals, Inc.//////////////////Yoshinori Okamura et al 2001 reported the protein tyrosine kinase expression in the porcine ovary. Various growth factor receptors contain intrinsic tyrosine kinase activity, indicating that protein tyrosine kinases (PTK) play an important role in signal transduction pathways for cell proliferation and differentiation. To identify oocyte-derived factors which control follicle cells as well as oocyte-controlling factors produced by follicle cells, the authors examined the expression of genes which contain the PTK domain in the porcine ovary, using a polymerase chain reaction-based amplification technique with degenerate oligonucleotide primers that are specific to the PTK domain. Clones for the porcine homologues of focal adhesion kinase (FAK), of c-kit and of fms-like tyrosine kinase (FLT)-3 were found only in oocytes. Moreover, after 24 h of in-vitro maturation of the cumulus-oocyte complexes, clones for the porcine homologues of FLT-1, of FLT-4, of Tie2 and of RYK in oocytes were observed. Immunohistochemical studies revealed the existence of PDGFR, platelet-derived growth factor A (PDGFA), FAK and FLT3 in oocytes at various stages of folliculogenesis. These results suggest that fluctuations in the expression of these PTK genes may be involved in follicle growth and maturation. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. Pelech S et al. Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation.
Expression regulated by
Comment
Ovarian localization Oocyte, Cumulus, Granulosa
Comment Distribution and Y397 phosphorylation of focal adhesion kinase on follicular development in the mouse ovary. Sakurai M et al. Several protein tyrosine kinases (PTKs) are identified as follicle survival factors that suppress apoptosis in granulosa cells. Focal adhesion kinase (FAK/PTK2) interacts with numerous signaling partners and is important for cell adhesion, survival and other vital processes in which FAK autophosphorylation at Y397 (pY397 FAK) is critical for activating signaling pathways. Despite its important roles in apoptosis, the expression and function of FAK in the ovaries remain unknown. Here, we describe FAK expression, including pY397 FAK, in normal healthy mouse ovaries and its association with follicular development and/or atresia. Normal healthy mouse ovaries were used for western blot (n?>?60) and immunohistochemical (n?>?180) analyses. Western blot results in immature and mature mice revealed that total FAK and pY397 FAK were highly expressed in the ovary and immunohistochemistry results in 3-week-old mice showed they were localized to granulosa cells of ovarian follicles, especially preantral follicles. In 3-week-old mice treated with 5IU pregnant mare serum gonadotropin (for obtaining homogenous populations of growing or atretic follicles), western blotting revealed that follicular atresia progression involved decreased phosphorylation of Y397 at 72 and 96h after treatment, particularly in granulosa cells of atretic follicles, as shown by immunohistochemistry results at 72h after treatment. Moreover, immunostaining patterns of FAK and cleaved caspase-3 were negatively correlated in serial sections of 3-week-old mouse ovaries. These results suggest that FAK is most active in ovarian follicle granulosa cells and that its phosphorylation at Y397 is histologically meaningful in follicular development in normal healthy ovaries.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: Role of focal adhesion kinase in oocyte-follicle communication. McGinnis LK et al. (2014) Germ cells require communication with associated somatic cells for normal gametogenesis, as exemplified by an oocyte that interacts with granulosa cells via paracrine factors as well as gap junctions located at sites of contact between these two cell types. The objective of the present study was to define the mechanisms by which cell-cell contact with the oocyte is controlled and to determine the extent that the oocyte actively participates in this association. Proline-rich tyrosine kinase 2 (PTK2), a focal adhesion kinase, was found to be activated at sites of contact between the oocyte and trans-zonal cell processes from the surrounding granulosa cells. In order to determine the functional significance of oocyte-derived PTK2 signaling in oocyte-follicle communication, an oocyte-specific Ptk2 knockout was produced through a breeding strategy pairing a floxed Ptk2-CAT-eGFP mouse with the Zp3-Cre line. Since Ptk2-null mice never develop to birth, this represents the first opportunity to define the role of PTK2 in oocyte-follicle communication. Ablation of Ptk2 within the developing oocyte resulted in lower fertility with reduced numbers of pups, lower rates of blastocyst formation, and reduced cell numbers per blastocyst. Follicles containing Ptk2-null oocytes exhibited reduced oocyte diameter, reduced numbers of connexin 37 and 43 foci at the oocyte surface, and impaired dye coupling between oocyte and granulosa cells. These findings are consistent with a model in which PTK2 plays a critical role in establishing or maintaining oocyte-granulosa cell contacts that are essential for gap junction-mediated communication between granulosa cells and the oocyte. Mol. Reprod. Dev. 2014. © 2014 Wiley Periodicals, Inc.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
Search for Antibody


created: Aug. 8, 2001, 3:39 p.m. by: hsueh   email:
home page:
last update: Feb. 25, 2015, 11:24 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form