Focal adhesion kinase, also known as cytoplasmic protein-tyrosine kinase
(PTK2), which lacks any significant homology with other kinases. It concentrates in the focal
adhesions that form between cells growing in the presence of extracellular matrix constituents, such as fibronectin.
NCBI Summary:
This gene encodes a cytoplasmic protein tyrosine kinase which is found concentrated in the focal adhesions that form between cells growing in the presence of extracellular matrix constituents. The encoded protein is a member of the FAK subfamily of protein tyrosine kinases but lacks significant sequence similarity to kinases from other subfamilies. Activation of this gene may be an important early step in cell growth and intracellular signal transduction pathways triggered in response to certain neural peptides or to cell interactions with the extracellular matrix. Several transcript variants encoding different isoforms have been found for this gene, but the full-length natures of only three of them have been determined. [provided by RefSeq]
Distribution and Y397 phosphorylation of focal adhesion kinase on follicular development in the mouse ovary. Sakurai M et al. Several protein tyrosine kinases (PTKs) are identified as follicle survival factors that suppress apoptosis in granulosa cells. Focal adhesion kinase (FAK/PTK2) interacts with numerous signaling partners and is important for cell adhesion, survival and other vital processes in which FAK autophosphorylation at Y397 (pY397 FAK) is critical for activating signaling pathways. Despite its important roles in apoptosis, the expression and function of FAK in the ovaries remain unknown. Here, we describe FAK expression, including pY397 FAK, in normal healthy mouse ovaries and its association with follicular development and/or atresia. Normal healthy mouse ovaries were used for western blot (n?>?60) and immunohistochemical (n?>?180) analyses. Western blot results in immature and mature mice revealed that total FAK and pY397 FAK were highly expressed in the ovary and immunohistochemistry results in 3-week-old mice showed they were localized to granulosa cells of ovarian follicles, especially preantral follicles. In 3-week-old mice treated with 5IU pregnant mare serum gonadotropin (for obtaining homogenous populations of growing or atretic follicles), western blotting revealed that follicular atresia progression involved decreased phosphorylation of Y397 at 72 and 96h after treatment, particularly in granulosa cells of atretic follicles, as shown by immunohistochemistry results at 72h after treatment. Moreover, immunostaining patterns of FAK and cleaved caspase-3 were negatively correlated in serial sections of 3-week-old mouse ovaries. These results suggest that FAK is most active in ovarian follicle granulosa cells and that its phosphorylation at Y397 is histologically meaningful in follicular development in normal healthy ovaries.