notch receptor 2 | OKDB#: 1379 |
Symbols: | NOTCH2 | Species: | human | ||
Synonyms: | hN2, AGS2, HJCYS | Locus: | 1p12 in Homo sapiens | HPMR |
For retrieval of Nucleotide and Amino Acid sequences please go to:
OMIM
Entrez Gene
Mammalian Reproductive Genetics Endometrium Database Resource Orthologous Genes UCSC Genome Browser GEO Profiles new! Amazonia (transcriptome data) new! R-L INTERACTIONS MGI |
General Comment |
In Drosophila, the 'Notch' gene controls differentiation to various cell fates in many tissues. Three mammalian 'Notch'
homologs have been identified. All 3 are very highly conserved relative to the Drosophila gene, which suggests that
they are important for cell differentiation in mammals.
NCBI Summary: This gene encodes a member of the Notch family. Members of this Type 1 transmembrane protein family share structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple, different domain types. Notch family members play a role in a variety of developmental processes by controlling cell fate decisions. The Notch signaling network is an evolutionarily conserved intercellular signaling pathway which regulates interactions between physically adjacent cells. In Drosophilia, notch interaction with its cell-bound ligands (delta, serrate) establishes an intercellular signaling pathway that plays a key role in development. Homologues of the notch-ligands have also been identified in human, but precise interactions between these ligands and the human notch homologues remain to be determined. This protein is cleaved in the trans-Golgi network, and presented on the cell surface as a heterodimer. This protein functions as a receptor for membrane bound ligands, and may play a role in vascular, renal and hepatic development. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2011] |
||||
General function | Receptor | ||||
Comment | |||||
Cellular localization | Plasma membrane | ||||
Comment | |||||
Ovarian function | Follicle endowment, Follicle development, Preantral follicle growth, Luteolysis, Oocyte maturation | ||||
Comment | Effects of Notch2 on proliferation, apoptosis and steroidogenesis in bovine luteinized granulosa cells. Li Y et al. (2021) Notch signaling pathway plays an important regulatory role in the development of mammalian follicles. This study aimed to explore the effect of Notch2 on the function of bovine follicles luteinized granulosa cells (LGCs). We detected that the coding sequence (CDS) of bovine Notch2 gene is 7416 bp, encoding 2471 amino acids (AA). The homology of Notch2 AA sequence between bovine and other species is 86.04%-98.75%, indicating high conservatism. Immunohistochemistry found that Notch2 receptor and its ligand Jagged2 localize in granulosa cells (GCs) and theca cells in bovine antral follicles. And immunofluorescence found that positive signals of Notch2 and Jagged2 overlap in bovine LGCs, speculating that Notch2 receptor may react with Jagged2 ligand to activate Notch signaling pathway and play an important role in bovine LGCs. To further investigate the function of Notch2, Notch2 gene was silenced by short hairpin RNA (shRNA) and CCK-8 analysis showed that the proliferation rate of LGCs was downregulated significantly (P < 0.01). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that the mRNA expression of apoptosis related gene Bcl-2/Bax decreased (P < 0.01) and Caspase3 increased (P < 0.05), cell cycle related gene CyclinD2/CDK4 complex decreased (P < 0.01) and P21 increased (P < 0.05), steroidogenesis gene STAR and 3β-HSD decreased (P < 0.01) while CYP19A1 and CYP11A1 had no significant difference (P > 0.05). In addition, Enzyme-linked immunosorbent assay (ELISA) showed that there was no difference in estradiol (E2) secretion (P > 0.05) while the progesterone (P4) secretion decreased (P < 0.01). In conclusion, Notch2 plays an important role in regulating bovine LGCs development.////////////////// Primordial follicle assembly was regulated by notch signaling pathway in the mice. Chen CL 2014 et al. Notch signaling pathway, a highly conserved cell signaling system, exists in most multicellular organisms. The objective of this study was to examine Notch signaling pathway in germ cell cyst breakdown and primordial follicle formation. The receptor and ligand genes of Notch pathway (Notch1, Notch2, Jagged1, Jagged2 and Hes1) were extremely down-regulated after newborn mouse ovaries were cultured then exposed to DAPT or L-685,458 in vitro (P?0.01). Since DAPT or L-685,548 inhibits Notch signaling pathway, the expression of protein LHX8 and NOBOX was significantly reduced during the formation of the primordial follicles. Down-regulated mRNA expression of specific genes including Lhx8, Figla, Sohlh2 and Nobox, were also observed. The percentages of female germ cells in germ cell cysts and primordial follicles were counted after culture of newborn ovaries for 3?days in vitro. The result showed female germ cells in cysts was remarkably up-regulated while as the oocytes in primordial follicles was significantly down-regulated (P?0.05). In conclusion, Notch signaling pathway may regulate the formation of primordial follicle in mice. ///////////////////////// Notch signaling pathway in cumulus cells can be a novel marker to identify poor and normal responder IVF patients. Tanriverdi G 2013 et al. PURPOSE To identify expression of Notch signaling proteins and its ligands in human cumulus cells which were obtained by follicle aspiration and to compare the differences of this protein expression between the normal and poor responder patients. METHODS 47 patients who applied to the assisted reproductive treatments with various infertility problems were included to the study. Controlled ovarian hyperstimulation was performed by using GnRH agonist and gonadotropins. Serum hormon levels were measured by using Chemilluminescent Microparticle Immunoassay method for each patient. After ultrasonographic ovarian follicle screening, oocytes were retrievaled. Cumulus cells obtained from the follicles were cultured for 72?h and immunuhistochemistry were performed for Notch1, Notch2, Notch3, Notch4, Jagged1 and Jagged2 proteins. Histological score (HSCORE) were applied to all of the samples. The association between Notch and its ligands protein expressions and the oocyte-embryo quality and fertilization rates were investigated. RESULTS Significant differences were observed between the mean values of age, AMH and FSH in the 2 groups, respectively (p?0.05). However, the mean female infertility duration and total gonadotropin dose did not differ significantly between normal and poor responder groups. All the patients cumulus cells expressed Notch1, Notch2, Notch3, Notch4, Jagged1 and Jagged2. There was a significant difference (p?0.05) only for Notch2 between the 2 groups and a positive correlation between Notch2 and Notch3 (r?=?547, p?=?0.00) expressions were noted. Furthermore, no correlations were observed between the following: Notch1, Notch2, Notch3, Notch4, Jagged1, and Jagged2 expression; mature oocyte number; fertilization rates, and embryo quality percentage in both of the groups. CONCLUSION Notch signalling proteins can be an indicator for understanding the ovarian response in ovulation induction. ///////////////////////// Suppression of Notch Signaling in the Neonatal Mouse Ovary Decreases Primordial Follicle Formation. Trombly DJ et al. Notch signaling directs cell fate during embryogenesis by influencing cell proliferation, differentiation, and apoptosis. Notch genes are expressed in the adult mouse ovary, and roles for Notch in regulating folliculogenesis are beginning to emerge from mouse genetic models. We investigated how Notch signaling might influence the formation of primordial follicles. Follicle assembly takes place when germ cell syncytia within the ovary break down and germ cells are encapsulated by pre-granulosa cells. In the mouse, this occurs during the first 4-5 days of postnatal life. The expression of Notch family genes in the neonatal mouse ovary was determined through RT-PCR measurements. Jagged1, Notch2, and Hes1 transcripts were the most abundantly expressed ligand, receptor, and target gene, respectively. Jagged1 and Hey2 mRNAs were upregulated over the period of follicle formation. Localization studies demonstrated that JAGGED1 is expressed in germ cells prior to follicle assembly and in the oocytes of primordial follicles. Pre-granulosa cells that surround germ cell nests express HES1. In addition, pre-granulosa cells of primordial follicles expressed NOTCH2 and Hey2 mRNA. We used an ex vivo ovary culture system to assess the requirement for Notch signaling during early follicle development. Newborn ovaries cultured in the presence of DAPT or L-658,458, gamma secretase inhibitors that attenuate Notch signaling, had a marked reduction in primordial follicles compared to vehicle-treated ovaries, and there was a corresponding increase in germ cells that remained within nests. These data support a functional role for Notch signaling in regulating primordial follicle formation. | ||||
Expression regulated by | |||||
Comment | |||||
Ovarian localization | Granulosa, Theca, Luteal cells | ||||
Comment | Intraovarian regulation of gonadotropin-dependent folliculogenesis depends on notch receptor signaling pathways not involving Delta-like ligand 4 (Dll4). Jovanovic VP et al. BACKGROUND: In-situ hybridisation studies demonstrate that Notch receptors and ligands are expressed in granulosa cells (GCs) and in the theca layer vasculature of growing follicles. Notch signaling involves cell-to-cell interaction mediated by transmembrane receptors and ligands. This signaling pathway may represent a novel intraovarian regulator of gonadotropin-dependent follicular development to the preovulatory stage. We hypothesized that blocking Notch pathways would disrupt follicular maturation in the mouse ovary. METHODS: Hypophysectomized CD21 female mice were administered pregnant mare serum gonadotropin (PMSG) for 3 days to stimulate follicular development. In one experiment, a pan-notch inhibitor, compound E, was initiated 2 days prior to and throughout stimulation (n = 10), while in a second experiment, a humanized phage Dll4 blocking antibody, YW152F, was used (n = 5). After sacrifice, ovarian histology, serum estradiol levels and uterine weights were compared to controls. The ovarian morphology was evaluated with hematoxylin/eosin staining and immunohistochemistry was performed for Notch1, Notch2, Notch3, Notch4, Jagged1, Dll4, platelet endothelial cell adhesion molecule (PECAM) and alpha-smooth muscle actin (alpha-SMA) detection. RESULTS: We localized specific Notch ligands and receptors in the following structures: Dll4 is specific to theca layer endothelial cells (ECs); Notch1/Notch4 and Jagged1 are expressed in theca layer ECs and vascular smooth muscle cells (VSMCs), whereas Notch3 is restricted to VSMCs; Notch2 is expressed mostly on GCs of small follicles. Administration of a pan-Notch inhibitor, compound E, inhibits follicular development to the preovulatory stage (8.5 preovulatory follicles in treatment vs. 3.4 preovulatory follicles in control, p < 0.01; average number per ovary) with significant secondary effects on ovarian and uterine weight and estradiol secretion in a setting of uninhibited vascular proliferation, but disorganized appearance of ECs and VSMCs. Inhibition of endothelial Notch1 function through the inactivation of its ligand Dll4 with the blocking antibody YW152F induces mild disorganisation of follicular vasculature, but has no significant effect on gonadotropin-dependent folliculogenesis. CONCLUSIONS: Our experiments suggest that the complete blockage of the Notch signaling pathway with compound E impairs folliculogenesis and induces disruption of gonadotropin stimulated angiogenesis. It seems the mechanism involves Notch1 and Notch3, specifically, causing the improper assembly of ECs and VSMCs in the theca layer, although the potential role of non-angiogenic Notch signaling, such as Jagged2 to Notch2 in GCs, remains to be elucidated. ////// Johnson J,et al reported that Notch pathway genes are expressed in mammalian ovarian follicles. Genes that regulate the proliferation and differentiation of granulosa cells are beginning to be elucidated. In this study, the expression patterns of Notch receptor genes and their ligands, which have been shown to regulate cell-fate decisions in many systems during development, were examined in the mammalian ovary. In situ hybridization data showed that Notch2, Notch3, and Jagged2 were expressed in an overlapping pattern in the granulosa cells of developing follicles. Jagged1 was expressed in oocytes exclusively. Downstream target genes of Notch also were expressed in granulosa cells. These data implicate the Notch signaling pathway in the regulation of mammalian folliculogenesis. | ||||
Follicle stages | Primordial, Antral | ||||
Comment | |||||
Phenotypes |
POF (premature ovarian failure) |
||||
Mutations |
4 mutations
Species: mouse
Species: mouse
Species: human
Species: human
|
||||
Genomic Region | show genomic region | ||||
Phenotypes and GWAS | show phenotypes and GWAS | ||||
Links |
|
created: | Dec. 11, 2001, 6:40 a.m. | by: |
hsueh email:
home page: |
last update: | May 25, 2021, 9:28 a.m. | by: | hsueh email: |
Click here to return to gene search form