Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

hyaluronan synthase 3 OKDB#: 1446
 Symbols: HAS3 Species: human
 Synonyms:  Locus: 16q22.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Hyaluronan (HA) is an unbranched glycosaminoglycan composed of repeating disaccharide units. It is a major constituent of the extracellular matrix and has been implicated in development, tumorigenesis, and several diseases. HA is synthesized at the inner face of the plasma membrane and is subsequently extruded to the outside of the cell. senescence

NCBI Summary: The protein encoded by this gene is involved in the synthesis of the unbranched glycosaminoglycan hyaluronan, or hyaluronic acid, which is a major constituent of the extracellular matrix. This gene is a member of the NODC/HAS gene family. Compared to the proteins encoded by other members of this gene family, this protein appears to be more of a regulator of hyaluronan synthesis. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2010]
General function Enzyme
Comment
Cellular localization Plasma membrane
Comment
Ovarian function Preantral follicle growth, Cumulus expansion
Comment Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Amargant F et al. (2020) Fibrosis is a hallmark of aging tissues which often leads to altered architecture and function. The ovary is the first organ to show overt signs of aging, including increased fibrosis in the ovarian stroma. How this fibrosis affects ovarian biomechanics and the underlying mechanisms are unknown. Using instrumental indentation, we demonstrated a quantitative increase in ovarian stiffness, as evidenced by an increase in Young's modulus, when comparing ovaries from reproductively young (6-12 weeks) and old (14-17 months) mice. This ovarian stiffness was dependent on collagen because ex vivo enzyme-mediated collagen depletion in ovaries from reproductively old mice restored their collagen content and biomechanical properties to those of young controls. In addition to collagen, we also investigated the role of hyaluronan (HA) in regulating ovarian stiffness. HA is an extracellular matrix glycosaminoglycan that maintains tissue homeostasis, and its loss can change the biomechanical properties of tissues. The total HA content in the ovarian stroma decreased with age, and this was associated with increased hyaluronidase (Hyal1) and decreased hyaluronan synthase (Has3) expression. These gene expression differences were not accompanied by changes in ovarian HA molecular mass distribution. Furthermore, ovaries from mice deficient in HAS3 were stiffer compared to age-matched WT mice. Our results demonstrate that the ovary becomes stiffer with age and that both collagen and HA matrices are contributing mechanisms regulating ovarian biomechanics. Importantly, the age-associated increase in collagen and decrease in HA are conserved in the human ovary and may impact follicle development and oocyte quality.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa, Theca
Comment Naoko Kimura et al 2002 reported the expression of Hyaluronan Synthases and CD44 Messenger RNAs in Porcine Cumulus-Oocyte Complexes During In Vitro Maturation. The transient synthesis and accumulation of hyaluronan (HA), an extracellular matrix component of cumulus cells, brings about expansion of cumulus-oocyte complexes (COCs) in preovulatory mammalian follicles. In this study, the authors investigated the mRNA expressions of hyaluronan synthase 2 (has2), hyaluronan synthase 3 (has3), and CD44, as well as the responsiveness to eCG and porcine follicular fluid (pFF) of these genes, in porcine COCs, oocytectomized complexes (OXCs), and oocytes during in vitro maturation. Immunolocalization of CD44 was also analyzed in COCs. After 12 h of culture, the area of cumulus expansion in medium 199 supplemented with both 10 IU/ml eCG and 10% (v/v) pFF was significantly greater than that in the medium supplemented with eCG or pFF. Oocytectomy reduced the expansion area in the group supplemented with eCG. In reverse transcription-polymerase chain reaction analysis, all transcripts were identified in COCs, but has3 transcript was not found in OXCs. Only has3 mRNA was detectable in oocytes, indicating that cumulus cells express has2 and CD44 mRNAs, and oocytes express has3 mRNA. The expression levels of has2 and CD44 mRNAs in COCs and OXCs increased in the presence of eCG and pFF after 24 h of culture, suggesting that these genes have a positive dependency on eCG and pFF. In contrast, the high level of has3 mRNA was detected in COCs cultured in the medium alone. Oocytectomy slightly reduced the expression level of has2 mRNA. On immunostaining for CD44, CD44 was expressed apparently in COCs cultured with eCG and pFF for 24 h. The positive staining was distributed on cytoplasm along the perimembrane of cumulus cells and at the junctions between cumulus cells and oocytes. CD44 was also localized on cytoplasm of some oocytes. These results indicate that 1) porcine oocytes promote eCG-dependent cumulus expansion and the expression of has2 mRNA in cumulus cells, but these are not essential for expansion of cumulus cells and the expression of has2 mRNA; 2) HAS2 is involved in HA synthesis during cumulus expansion, and eCG and pFF up-regulate its expression; 3) the expression profile of the has3 mRNA that is transcribed in oocytes is different from those of has2 and CD44 mRNA; and 4) CD44 may participate in the interaction between cumulus cells and oocytes.
Follicle stages Antral, Preovulatory
Comment Involvement of hyaluronan synthesis for ovarian follicle growth in rats. Takahashi N 2013 et al. Most previous studies of ovarian HA have focused on mature antral follicles or corpora lutea, but scarcely on small preantral follicles. Moreover, the origin of follicular HA is unknown. To clarify the localization of HA and its synthases in small growing follicles, involvement of HA in follicle growth and gonadotropin regulation of HA synthase Has gene expression, perinatal, immature and adult ovaries of Wistar-Imamichi rats were examined histologically, biochemically and by in vitro follicle culture. HA was detected in the extracellular matrix of granulosa and theca cell layers of primary follicles and more advanced follicles. Ovarian HA accumulation ontogenetically started in the sex cords of perinatal animals, and its primary site shifted to the intrafollicular region of primary follicles within 5 days after birth. Messenger RNAs for Has1-3 were expressed in ovaries from perinatal, prepubertal and adult rats, and the expression levels of Has1 and Has2 genes were modulated during the estrous cycle in adults and following administration of exogenous gonadotropins in immature acyclic rats. Has1 and Has2 mRNAs were predominantly localized in the theca and granulosa cell layer of growing follicles, respectively. Treatments with chemicals that are known to reduce ovarian HA induced follicular atresia. More directly, addition of Streptomyces hyaluronidase, which specifically degrades HA, induced the arrest of follicle growth in an in vitro culture system. These results indicate that gonadotropin-regulated HA synthesis is involved in normal follicle growth. /////////////////////////
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: March 4, 2002, 4:37 p.m. by: hsueh   email:
home page:
last update: Oct. 29, 2020, 6:50 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form