Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Ephrin Receptor Ephb2 OKDB#: 1617
 Symbols: EPHB2 Species: human
 Synonyms: ELK-RELATED TYROSINE KINASE, ERK|DEVELOPMENTALLY REGULATED EPH-RELATED TYROSINE KINASE, DRT|EPH TYROSINE KINASE 3, EPHT3|HEK5|  Locus: 1p36.1-p35 in Homo sapiens
HPMR


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment The EPH and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases. They have been implicated in mediating developmental events, particularly in the nervous system. Receptors in the Eph subfamily typically have a single kinase domain and an extracellular region containing a Cys-rich domain and 2 fibronectin type III repeats

NCBI Summary: Ephrin receptors and their ligands, the ephrins, mediate numerous developmental processes, particularly in the nervous system. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. The Eph family of receptors are divided into 2 groups based on the similarity of their extracellular domain sequences and their affinities for binding ephrin-A and ephrin-B ligands. Ephrin receptors make up the largest subgroup of the receptor tyrosine kinase (RTK) family. The protein encoded by this gene is a receptor for ephrin-B family members.
General function Receptor
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization
Comment In order to study the function of tyrosine kinase receptors during Xenopus development, Jones et al. (1995) have isolated Xek (Xenopus Elk-like kinase), a tyrosine kinase receptor, which shows significant homology to rat Elk and chicken cek5, members of the Eph family. Xek exists as a maternally expressed mRNA which decreases in expression at the mid blastula transition and reappears at late neurulation in Xenopus. Xek mRNA is expressed at higher levels in the anterior and dorsal regions of embryonic stages 16, 24 and 37. In adult Xenopus tissues, Xek appears to be ubiquitously expressed with higher expression observed in brain and ovary.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Sept. 17, 2002, 11:23 a.m. by: hsueh   email:
home page:
last update: Nov. 5, 2003, 12:30 p.m. by: system    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form