Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

tubulin, beta 2A class IIa OKDB#: 1677
 Symbols: TUBB2A Species: human
 Synonyms: TUBB, TUBB2, CDCBM5  Locus: 6p25 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Microtubules are constituent parts of a diverse variety of eukaryotic cell structures, e.g., the mitotic apparatus, cilia, flagella, and elements of the cytoskeleton. They consist principally of 2 soluble proteins, alpha- and beta-tubulin, each with a molecular weight of about 55,000.

NCBI Summary: Microtubules, key participants in processes such as mitosis and intracellular transport, are composed of heterodimers of alpha- and beta-tubulins. The protein encoded by this gene is a beta-tubulin. Defects in this gene are associated with complex cortical dysplasia with other brain malformations-5. Two transcript variants encoding distinct isoforms have been found for this gene. [provided by RefSeq, Jul 2015]
General function Cytoskeleton
Comment
Cellular localization Cytoskeleton
Comment
Ovarian function Follicle development
Comment
Expression regulated by FSH
Comment
Ovarian localization Oocyte, Granulosa
Comment Nicole A. Grieshaber et al reported the Follicle-Stimulating Hormone-Responsive Cytoskeletal Genes in Rat Granulosa Cells: Class I -Tubulin, Tropomyosin-4, and Kinesin Heavy Chain. FSH regulates gene expression for granulosa cell differentiation and follicular development. Therefore, FSH-responsive genes are crucial, but only a few genes have been identified for the early stage of follicular development. In particular, little is known about cytoskeletal genes, which likely play essential roles in the morphological changes such as the antrum formation, a major landmark. FSH is also known to induce the differentiation of an immature, undifferentiated rat ovary granulosa (ROG) cell line. The data show that FSH induced massive yet distinct reorganization of microtubules and the actin cytoskeletons as well as morphological changes. To identify those genes responding to FSH during the differentiation, differential display was performed on ROG cells. Of the 80 FSH-responsive genes identified, there were three cytoskeleton-related genes (class I -tubulin, tropomyosin 4, and kinesin heavy chain), which are crucial for intracellular morphogenesis, transport, and differentiation. Northern blots show that the level of these gene transcripts reached a peak at 6 h after FSH treatment and subsided at 24 h. FSH induced the similar temporal expression not only in granulosa cells isolated from immature rats, but also in vivo. For instance, in situ hybridization showed that -tubulin mRNA was transiently expressed in the granulosa cells of large preantral and early antral follicles. Despite the same temporal expression, the regulatory mechanisms of the three genes were strikingly different. As an example, cycloheximide blocked the -tubulin mRNA expression, whereas it increased tropomyosin-4 (TM4) mRNA. Yet, it did not impact kinesin heavy chain (Khc) mRNA. In conclusion, FSH induces the massive reorganization of the cytoskeletons and morphological changes by the selective regulation of the gene expression, protein synthesis, and rearrangement of the cytoskeletal proteins in the ROG cells and probably, specific follicles and granulosa cells.
Follicle stages Antral, Preovulatory
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Dec. 20, 2002, 3:55 p.m. by: hsueh   email:
home page:
last update: Dec. 7, 2015, 3:17 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form