Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

protein tyrosine kinase 2 beta OKDB#: 1698
 Symbols: PTK2B Species: human
 Synonyms: PKB, PTK, CAKB, FAK2, PYK2, CADTK, FADK2, RAFTK  Locus: 8p21.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Focal adhesion kinases are cytoplasmic protein-tyrosine kinases associated with focal adhesions and whose activity is induced by ligand binding to various receptors including those for integrin, growth factors, etc. FAKs are known to target paxillin (602505) and are substrates for Src family kinases .PYK2 protein undergoes rapid tyrosine phosphorylation in response to various stimuli that elevate intracellular calcium concentration, such as addition of bradykinin, a neuropeptide hormone that binds to a G protein-coupled receptor and in turn stimulates phosphatidylinositol hydrolysis. PYK2 is also tyrosine phosphorylated following activation of the nicotinic acetylcholine receptor , by membrane depolarization, and by treatment of cells with a calcium ionophore. Protein kinase C (176960) activation also induces PYK2 phosphorylation.

NCBI Summary: This gene encodes a cytoplasmic protein tyrosine kinase which is involved in calcium-induced regulation of ion channels and activation of the map kinase signaling pathway. The encoded protein may represent an important signaling intermediate between neuropeptide-activated receptors or neurotransmitters that increase calcium flux and the downstream signals that regulate neuronal activity. The encoded protein undergoes rapid tyrosine phosphorylation and activation in response to increases in the intracellular calcium concentration, nicotinic acetylcholine receptor activation, membrane depolarization, or protein kinase C activation. This protein has been shown to bind CRK-associated substrate, nephrocystin, GTPase regulator associated with FAK, and the SH2 domain of GRB2. The encoded protein is a member of the FAK subfamily of protein tyrosine kinases but lacks significant sequence similarity to kinases from other subfamilies. Four transcript variants encoding two different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
General function Cytoskeleton organization, Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Follicle development, Oocyte maturation, Early embryo development
Comment Sperm-Oocyte Contact Induces Outside-In Signaling via PYK2 Activation. Wang H et al. (2017) Fertilization is a multi-step process that begins with plasma membrane interactions that enable sperm - oocyte binding followed by fusion of the sperm and oocyte plasma membranes. Once membrane fusion has occurred, sperm incorporation involves actin remodeling events within the oocyte cortex that allow the sperm head to penetrate the cortical actin layer and gain access to the ooplasm. Despite the significance for reproduction, the control mechanisms involved in gamete binding, fusion, and sperm incorporation are poorly understood. While it is known that proline - rich tyrosine kinase 2 (PYK2 or PTK2b) kinase activity plays an important role in fertilization, its specific function has not been addressed. The present study made use of a zona-free mouse oocyte fertilization assay to investigate the relationship between PYK2 activity and sperm - oocyte binding and fusion, as well as localized changes in actin polymerization and sperm incorporation. In this assay, the majority of bound sperm had no apparent effect on the oocyte and only a few became incorporated into the ooplasm. However, a subset of bound sperm were associated with a localized response in which PYK2 was recruited to the oocyte cortex where it frequently co-localized with a ring or disk of f-actin. The frequency of sperm-oocyte binding sites that exhibited this actin response was reduced in pyk2(-/-) oocytes and the pyk2(-/-) oocytes proved less efficient at incorporating sperm, indicating that this protein kinase may have an important role in sperm incorporation. The response of PYK2 to sperm-oocyte interaction appeared unrelated to gamete fusion since PYK2 was recruited to sperm - binding sites under conditions where sperm - oocyte fusion was prevented and since PYK2 suppression or ablation did not prevent sperm - oocyte fusion. While a direct correlation between the PYK2 response in the oocyte and the successful incorporation of individual bound sperm remains to be established, these findings suggest a model in which the oocyte is not a passive participant in fertilization, but instead responds to sperm contact by localized PYK2 signaling that promotes actin remodeling events required to physically incorporate the sperm head into the ooplasm.////////////////// PTK2b function during fertilization of the mouse oocyte. Luo J 2014 et al. Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development. ///////////////////////// PYK2: A Calcium-sensitive Protein Tyrosine Kinase Activated in Response to Fertilization of the Zebrafish Oocyte. Sharma D et al. Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone. NuMA distribution and microtubule configuration in rabbit oocytes and cloned embryos. Yan LY et al. The assembly of microtubules and the distribution of NuMA were analyzed in rabbit oocytes and early cloned embryos. alpha-Tubulin was localized around the periphery of the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), multi-arrayed microtubules were found tightly associated with the condensed chromosomes and assembled into spindles. After the enucleated oocyte was fused with a fibroblast, microtubules were observed around the introduced nucleus in most reconstructed embryos and formed a transient spindle 2-4 h post-fusion (hpf). A mass of microtubules surrounded the swollen pseudo-pronucleus 5 hpf and a normal spindle was formed 13 hpf in cloned embryos. NuMAwas detected in the nucleus in germinal vesicle-stage oocytes, and it was concentrated at the spindle poles in both meiotic and mitotic metaphase. In both donor cell nucleus and enucleated oocyte cytoplasm, NuMA was not detected, while NuMA reappeared in pseudo-pronucleus as reconstructed embryo development proceeded. However, no evident NuMA staining was observed in the poles of transient spindle and first mitotic spindle in nuclear transfer eggs. These results indicate that NuMA localization and its spindle pole tethering function are different during rabbit oocyte meiosis and cloned embryo mitosis.
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment Subcellular localization of Pyk2 during oocyte fertilization and early-embryo development in mice. Meng XQ et al. (2016) The non-receptor tyrosine kinase Pyk2 is a member of the focal adhesion kinase family and is highly expressed in oocytes. Using a combination of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2 and its activated form leave the cytoplasm and accumulate in the two pronuclei. We detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and localized to the perinuclear regions, where blastula cells come into contact with each other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse oocyte fertilization as well as throughout early embryo development.////////////////// Shiota M, et al 2003 reported that Protein Tyrosine Phosphatase PTP20 Induces Actin Cytoskeleton Reorganization by Dephosphorylating p190 RhoGAP in Rat Ovarian Granulosa Cells Stimulated with FSH. The authors identified 25 protein tyrosine phosphatases (PTPs) expressed in rat ovarian granulosa cells. Of these PTPs, the expression levels of at least PTP20, PTP-MEG1, PTPepsilonM, and PTPepsilonC significantly changed during the estrus cycle. They examined the cellular functions of PTP20 in granulosa cells by expressing the wild type, a catalytically inactive CS mutant in which Cys229 of PTP20 was changed to Ser, or a substrate-trapping DA mutant in which Asp197 was mutated to Ala, using an adenovirus vector. Overexpression of the wild type, but not of the CS mutant, induced retraction of the cell body with the extension of long, dendritic-like processes after stimulation with FSH (FSH), a critical factor for the survival and differentiation of these cells. In addition, cell adhesion to the substratum decreased in an FSH-dependent manner. Inhibiting Rho GTPase activity with C3 botulinum toxin caused similar morphological changes. The FSH-enhanced phosphotyrosine (p-Tyr) level of p190 RhoGAP was selectively reduced by the overexpressed wild-type, but not by mutated PTP20. Although p190 RhoGAP is tyrosine-phosphorylated by c-Src via the tyrosine kinase Pyk2, wild-type PTP20 had little effect on p-Tyr418 of c-Src and no effect on p-Tyr402 of Pyk2, which are required for the full c-Src activity and for interacting between Pyk2 and c-Src, respectively. The CS and DA mutants as well as the wild type reduced the formation of p190 RhoGAP-p120 RasGAP complexes. Confocal microscopy analysis revealed that PTP20 intracellularly colocalizes with p190 RhoGAP. These results demonstrate that PTP20 regulates the functions of granulosa cells in an FSH-dependent manner by dephosphorylating p190 RhoGAP and subsequently inducing reorganization of the actin cytoskeleton.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: fertile
Comment: Ptk2b deletion improves mice folliculogenesis and fecundity via inhibiting follicle loss mediated by Erk pathway. Cong Y et al. (2020) Ptk2b has been found playing critical roles in oocyte maturation and subsequent fertilization in vitro. But what is the exact in vivo function in reproduction still elusive. Here, by constructing Ptk2b mutant mice, we found Ptk2b was not essential for mice fertility, unexpectedly, contrary to previously reported in vitro findings, we found Ptk2b ablation significantly improved female fecundity. Follicle counting indicated that the number of primordial follicles and growing follicles in matured mice was significantly increased in the absence of Ptk2b, whereas the primordial follicle formation showed no defects. We also found this regulation was in an autophosphorylation independent pathway, as autophosphorylation site mutant mice (PTK2BY402F ) show no phenotype in female fertility. Further biochemistry studies revealed that Ptk2b ablation promotes folliculogenesis via Erk pathway mediate follicle survival. Together, we found a novel biological function of Ptk2b in folliculogenesis, which could be potentially used as a therapeutic target for corresponding infertility.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Jan. 30, 2003, 12:37 p.m. by: hsueh   email:
home page:
last update: July 8, 2020, 12:42 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form