Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

PROTEIN-TYROSINE PHOSPHATASE, NONRECEPTOR-TYPE, 13 OKDB#: 1761
 Symbols: PTPN13 Species: human
 Synonyms: PROTEIN-TYROSINE PHOSPHATASE PTPL1| FAS-ASSOCIATED PROTEIN-TYROSINE PHOSPHATASE 1, FAP1  Locus: 4q21.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Vital cellular functions such as cell proliferation and signal transduction are regulated in part by the balance between the activities of protein-tyrosine kinases (PTK) and protein-tyrosine phosphatases (PTPase). Oncogenesis can result from an imbalance. There are 2 classes of PTPase molecules: low molecular weight proteins with a single conserved phosphatase domain such as T-cell protein-tyrosine phosphatase (PTPT; 176887), and high molecular weight receptor-linked PTPases with 2 tandemly repeated conserved domains separated by 56 to 57 amino acids. [Shiota M, et al $2003 $12554790] reported that Protein Tyrosine Phosphatase PTP20 Induces Actin Cytoskeleton Reorganization by Dephosphorylating p190 RhoGAP in Rat Ovarian Granulosa Cells Stimulated with Follicle-Stimulating Hormone. The authors identified 25 protein tyrosine phosphatases (PTPs) expressed in rat ovarian granulosa cells.

NCBI Summary: The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP is a large protein that possesses a PTP domain at C-terminus, and multiple noncatalytic domains, which include a domain with similarity to band 4.1 superfamily of cytoskeletal-associated proteins, a region consisting of five PDZ domains, and a leucine zipper motif. This PTP was found to interact with, and dephosphorylate Fas receptor, as well as IkappaBalpha through the PDZ domains, which suggested its role in Fas mediated programmed cell death. This PTP was also shown to interact with GTPase-activating protein, and thus may function as a regulator of Rho signaling pathway. Four alternatively spliced transcript variants, which encode distinct proteins, have been reported.
General function Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Oocyte maturation
Comment Nedachi T, Conti M. reported a pPotential role of protein tyrosine phosphatase nonreceptor type 13 in the control of oocyte meiotic maturation. Protein tyrosine phosphatase nonreceptor type 13 (PTPN13) is a tyrosine phosphatase with multiple interacting domains that has been implicated previously in the regulation of apoptosis. The authors provide evidence that PTPN13 plays an important role in the control of the meiotic cell cycle. A cDNA coding for PTPN13 was isolated during the screening for the substrate of protein kinase A expressed in mammalian oocytes. PTPN13 is expressed in both mouse and Xenopus oocytes and is a substrate for protein kinase A in vitro and in vivo. Expression of a truncated constitutively-active PTPN13 in Xenopus oocytes synergizes with progesterone in the induction of germinal vesicle breakdown, the translation of Mos, the phosphorylation of Erk and the dephosphorylation of Cdc2. The phosphatase activity of PTPN13 is required for this synergism. Oocyte injection with specific small interference RNA downregulates the expression of mRNA for PTPN13 and blocks oocyte maturation induced by progesterone, a blockade that can be overcome by Cdc25 overexpression. These findings indicate that PTPN13 is involved in the regulation of the meiotic cell cycle.
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment
Follicle stages Antral, Preovulatory
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: April 8, 2003, 2:25 p.m. by: hsueh   email:
home page:
last update: Sept. 23, 2004, 9:31 a.m. by: system    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form