Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

CDC28 PROTEIN KINASE 1B; CKS1B OKDB#: 1791
 Symbols: CDC28 PROTEIN KINASE 1B; CKS1B Species: human
 Synonyms: CDC2-ASSOCIATED PROTEIN CKS1, CKS1|  Locus: 8q21 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment The Cks1 protein is a component of the Cdc28 protein kinase in the budding yeast Saccharomyces cerevisiae. There are 2 human homologs of the Cks1 gene of yeast. Designated CKS1 and CKS2, both encode proteins of 79 amino acids that share considerable homology at the amino acid level with the products of the corresponding gene in S. cerevisiae and another gene in the fission yeast Schizosaccharomyces pombe. Both human homologs were capable of rescuing a null mutation of the S. cerevisiae Cks1 gene when expressed from the S. cerevisiae GAL1 promoter. Linked to Sepharose beads, the CKS1 and CKS2 proteins could bind the CDC28/CDC2 protein kinase from both S. cerevisiae and human cells

NCBI Summary: CKS1B protein binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. The CKS1B mRNA is found to be expressed in different patterns through the cell cycle in HeLa cells, which reflects a specialized role for the encoded protein.
General function Cell death/survival, Cell cycle regulation
Comment
Cellular localization Nuclear
Comment
Ovarian function Oogenesis, Oocyte maturation
Comment Gene whose expression is detected by cDNA array hybridization: oncogenes, tumor suppressors, cell cycle regulators Rozenn Dalbi?Tran and Pascal Mermilloda The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mourot M et al. Transcription is arrested in the bovine oocyte within the first few hours of in vitro maturation, thus the stored maternal mRNAs accumulated in the oocyte are essential to sustain development until the Maternal-Zygotic Transition. In vivo matured oocytes have superior blastocyst formation rates than in vitro matured oocytes, suggesting that the mRNA content of these oocytes is of higher quality. To determine which transcripts may be associated with developmental competence, a Suppressive Subtractive Hybridization was performed between oocytes collected by ovariectomy at 6 hr post-LH surge and oocytes from slaughterhouse collected after 6 hr of maturation, resulting in a library enriched in these functionally important mRNAs. The clones were spotted onto a cDNA microarray and transcripts potentially associated with developmental competence were hybridized onto these slides. Hybridizations were performed with transcripts up-regulated in oocytes cultured for 6 hr in the presence or absence of rFSH in vitro, and secondly with transcripts up regulated in early-cleaving embryos versus those at the one-cell stage at 36 hr postfertilization. From these hybridizations, 13 candidates were selected. Their functional association with embryonic competence was validated by measuring their relative transcript levels by quantitative real-time PCR in eight different conditions: oocytes cultured with or without rFSH, early-versus late-cleaving embryos, and oocytes from different follicle sizes (1-3, 3-5, 5-8, and >8 mm of diameter). The gene candidates CCNB2, PTTG1, H2A, CKS1, PSMB2, SKIIP, CDC5L, RGS16, and PRDX1 showed a significant quantitative association with competence compared to BMP15, GDF9, CCNB1, and STK6. Mol. Reprod. Dev. (c) 2006 Wiley-Liss, Inc.
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment Spruck CH, et al 2003 reported that CKS1 is expressed in granulosa cells based on in situ hybridization analyses.
Follicle stages Antral
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: May 2, 2003, 11:34 a.m. by: hsueh   email:
home page:
last update: Oct. 30, 2006, 4:39 p.m. by: amazinmazin    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form