Progression through the mammalian cell cycle is regulated by the sequential activation and inactivation of the cyclin-dependent kinases. In adult cells, cyclin A2-dependent kinases are required for entry into S and M phases, completion of S phase, and centrosome duplication.
NCBI Summary:
The protein encoded by this gene belongs to the highly conserved cyclin family, whose members function as regulators of the cell cycle. This protein binds and activates cyclin-dependent kinase 2 and thus promotes transition through G1/S and G2/M. [provided by RefSeq, Aug 2016]
General function
Cell death/survival, Cell cycle regulation
Comment
Cellular localization
Cytoplasmic, Nuclear
Comment
Ovarian function
Oogenesis, Oocyte maturation
Comment
Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. Zhang QH et al. (2017) Cyclin A2 is a crucial mitotic Cdk regulatory partner that coordinates entry into mitosis and is then destroyed in prometaphase within minutes of nuclear envelope breakdown. The role of cyclin A2 in female meiosis and its dynamics during the transition from meiosis I (MI) to meiosis II (MII) remain unclear. We found that cyclin A2 decreases in prometaphase I but recovers after the first meiotic division and persists, uniquely for metaphase, in MII-arrested oocytes. Conditional deletion of cyclin A2 from mouse oocytes has no discernible effect on MI but leads to disrupted MII spindles and increased merotelic attachments. On stimulation of exit from MII, there is a dramatic increase in lagging chromosomes and an inhibition of cytokinesis. These defects are associated with an increase in microtubule stability in MII spindles, suggesting that cyclin A2 mediates the fidelity of MII by maintaining microtubule dynamics during the rapid formation of the MII spindle.//////////////////
Cyclin A2 Is Required for Sister Chromatid Segregation, But Not Separase Control, in Mouse Oocyte Meiosis. Touati SA et al. In meiosis, two specialized cell divisions allow the separation of paired chromosomes first, then of sister chromatids. Separase removes the cohesin complex holding sister chromatids together in a stepwise manner from chromosome arms in meiosis I, then from the centromere region in meiosis II. Using mouse oocytes, our study reveals that cyclin A2 promotes entry into meiosis, as well as an additional unexpected role; namely, its requirement for separase-dependent sister chromatid separation in meiosis II. Untimely cyclin A2-associated kinase activity in meiosis I leads to precocious sister separation, whereas inhibition of cyclin A2 in meiosis II prevents it. Accordingly, endogenous cyclin A is localized to kinetochores throughout meiosis II, but not in anaphase I. Additionally, we found that cyclin B1, but not cyclin A2, inhibits separase in meiosis I. These findings indicate that separase-dependent cohesin removal is differentially regulated by cyclin B1 and A2 in mammalian meiosis.
Expression regulated by
Comment
Ovarian localization
Oocyte, Granulosa
Comment
Distinct roles for the mammalian A-type cyclins during oogenesis Persson JL, et al .
There are two A-type cyclins in higher vertebrates, cyclin A1 and A2. Targeted mutagenesis has shown that cyclin A2 is essential for early embryonic development while cyclin A1 is required only for male meiosis. The embryonic lethality of cyclin A2 knockout mice has obviated understanding its role in other aspects of mammalian development, including the germ line. We reported previously that cyclin A2 expression in the male germ line is consistent with a role in both mitotic and meiotic cell cycles. Using in situ hybridization and immunohistochemistry, we now observe high levels of cyclin A2 in granulosa cells and less-abundant but readily detectable expression in ovarian and ovulated oocytes. A decrease in cyclin A2 protein was observed in oocytes from embryonic stages to post-natal and adult ovaries. Interestingly, cyclin A2 protein was nuclear in oocytes from embryonic day 13.5 to 15.5, changing to largely cytoplasmic in oocytes from embryonic day 16.5 to post-natal and adults. Readily detectable expression of the cyclin-dependent kinases Cdk1 and Cdk2, two common partners for the A-type cyclins, was observed in granulosa cells and oocytes at all stages of folliculogenesis. Cdk1 was predominantly cytoplasmic, whereas Cdk2 was both cytoplasmic and nuclear in oocytes. No cyclin A1 expression, at either the mRNA level or the protein level was detected in either embryonic or adult ovaries, consistent with the full fertility observed in female cyclin A1-deficient mice. These results suggest that in the female germ line, cyclin A2 but not cyclin A1 has distinct roles in both mitosis and meiosis.
Follicle stages
Secondary, Antral, Preovulatory
Comment
Phenotypes
Mutations
1 mutations
Species: mouse
Mutation name: None
type: null mutation fertility: embryonic lethal Comment:Winston N, et al reported early development of mouse embryos null mutant for the cyclin A2 gene occurs in the absence of maternally derived cyclin A2 gene products.
Progression through the mammalian cell cycle is regulated by the sequential activation and inactivation of the cyclin-dependent kinases. In adult cells, cyclin A2-dependent kinases are required for entry into S and M phases, completion of S phase, and centrosome duplication. However, mouse embryos lacking the cyclin A2 gene nonetheless complete preimplantation development, but die soon after implantation. In this report, the authors investigated whether a contribution of maternal cyclin A2 mRNA and protein to early embryonic cell cycles might explain these conflicting observations. Their data show that a maternal stock of cyclin A2 mRNA is present in the oocyte and persists after fertilization until the second mitotic cell cycle, when it is degraded to undetectable levels coincident with transcriptional activation of the zygotic genome. A portion of maternally derived cyclin A2 protein is stable during the first mitosis and persists in the cytoplasm, but is completely degraded at the second mitosis. The ability of cyclin A2-null mutants to develop normally from the four-cell to the postimplantation stage in the absence of detectable cyclin A2 gene product indicates therefore that cyclin A2 is dispensable for cellular progression during the preimplantation nongrowth period of mouse embryo development.