Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

glutamate-cysteine ligase modifier subunit OKDB#: 1813
 Symbols: GCLM Species: human
 Synonyms: GLCLR  Locus: 1p22.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. Jiao GZ et al. Although oocytes from prepubertal animals are found less competent than oocytes from adults, the underlying mechanisms are poorly understood. Using the mouse oocyte model, this paper has tested the hypothesis that the developmental potential of prepubertal oocytes is compromised due mainly to their impaired potential for glutathione synthesis. Oocytes from prepubertal and adult mice, primed with or without eCG, were matured in vitro and assessed for glutathione synthesis potential, oxidative stress, Ca reserves, fertilization and in vitro development potential. In unprimed mice, abilities for glutathione synthesis, activation, male pronuclear formation, blastocyst formation, cortical granule migration and polyspermic block were all compromised significantly in prepubertal compared to adult oocytes. Cysteamine and cystine supplementation to maturation medium significantly promoted oocyte glutathione synthesis and blastocyst development but difference due to maternal age remained. Whereas reactive oxygen species (ROS) levels increased, Ca storage decreased significantly in prepubertal oocytes. Levels of both catalytic and modifier subunits of the ?-glutamylcysteine ligase were significantly lower in prepubertal than in adult oocytes. Maternal eCG priming improved all the parameters and eliminated the age difference. Together, the results have confirmed our hypothesis by showing that prepubertal oocytes have a decreased ability to synthesize glutathione leading to an impaired potential to reduce ROS and to form male pronuclei and blastocysts. The resulting oxidative stress decreases the intracellular Ca store resulting in impaired activation at fertilization, and damages the microfilament network, which affects cortical granule redistribution leading to polyspermy. Gamma-glutamylcysteine synthetase, also known as glutamate-cysteine ligase (EC 6.3.2.2 ), is the first rate-limiting enzyme in glutathione biosynthesis. Human liver gamma-glutamylcysteine synthetase consists of 2 subunits: a heavy catalytic subunit (GCLC; OMIM 606857) and a light regulatory subunit.

NCBI Summary: Glutamate-cysteine ligase, also known as gamma-glutamylcysteine synthetase, is the first rate limiting enzyme of glutathione synthesis. The enzyme consists of two subunits, a heavy catalytic subunit and a light regulatory subunit. Gamma glutamylcysteine synthetase deficiency has been implicated in some forms of hemolytic anemia. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Apr 2015]
General function Cell death/survival, Anti-apoptotic, Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Follicle atresia, Early embryo development
Comment Antioxidant supplementation partially rescues accelerated ovarian follicle loss, but not oocyte quality, of glutathione deficient mice†. Lim J et al. (2020) The tripeptide thiol antioxidant glutathione (GSH) has multiple physiological functions. Female mice lacking the modifier subunit of glutamate cysteine ligase (GCLM), the rate-limiting enzyme in GSH synthesis, have decreased GSH concentrations, ovarian oxidative stress, preimplantation embryonic mortality, and accelerated age-related decline in ovarian follicles. We hypothesized that supplementation with thiol antioxidants, N-acetyl cysteine (NAC) or α-lipoic acid (ALA), will rescue this phenotype. Gclm-/- and Gclm+/+ females received 0 or 80 mM NAC in drinking water from postnatal day (PND) 21-30; follicle growth was induced with equine chorionic gonadotropin (eCG) on PND 27, followed by an ovulatory dose of human CG and mating with a wild type male on PND 29 and zygote harvest 20 h after hCG. NAC supplementation failed to rescue the low rate of second pronucleus formation in zygotes from Gclm-/- versus Gclm+/+ females. In the second study, Gclm-/- and Gclm+/+ females received diet containing 0, 150 or 600 mg/kg ALA beginning at weaning and were mated with wild type males from 8-20 wk of age. ALA failed to rescue the decreased offspring production of Gclm-/- females. However, 150 mg/kg diet ALA partially rescued the accelerated decline in primordial follicles, as well as the increased recruitment of follicles into the growing pool and the increased percentages of follicles with γH2AX positive oocytes or granulosa cells of Gclm-/- females. We conclude that ovarian oxidative stress is the cause of accelerated primordial follicle decline, while GSH deficiency per se may be responsible for preimplantation embryonic mortality in Gclm-/- females.//////////////////
Expression regulated by FSH, Steroids
Comment Follicle-Stimulating Hormone and Estradiol Interact to Stimulate Glutathione Synthesis in Rat Ovarian Follicles and Granulosa Cells. Hoang YD et al. Glutathione (GSH), the most abundant intracellular non-protein thiol, is critical for many cellular functions. The rate-limiting step in GSH synthesis is catalyzed by glutamate cysteine ligase (GCL), a heterodimer composed of a catalytic (GCLC) and a modifier (GCLM) subunit. The tissue-specific regulation of GSH synthesis is poorly understood. We previously showed that gonadotropin hormones regulate ovarian GSH synthesis. Herein we sought to clarify the ovarian cell type-specific effects of follicle stimulating hormone (FSH) and estradiol on GSH synthesis. Immature female rats were treated with estradiol to stimulate development of small antral follicles. Granulosa cells (GCs) from these follicles or whole follicles were cultured in serum-free media, with or without FSH and 17beta-estradiol. GSH and GCLC protein and mRNA levels increased in GCs treated with FSH alone. The effects of FSH on GCLC and GCLM protein and mRNA levels, GCL enzymatic activity, and GSH concentrations in GCs were significantly enhanced by the addition of estradiol. Estradiol alone had no effects on GSH. Dibromo cAMP mimicked and protein kinase A (PKA) inhibitors prevented FSH stimulation of GCL subunit protein levels. In cultured small antral follicles, FSH stimulated estradiol synthesis and robustly increased GCL subunit mRNA and protein levels and GSH concentrations. GCL subunit mRNA expression increased in both the granulosa cells and theca cells of follicles with FSH stimulation. These data demonstrate that maximal stimulation of GSH synthesis by FSH in granulosa cells and follicles requires estradiol. Without estradiol, FSH causes lesser increases in GCL subunit expression via a PKA dependent pathway.
Ovarian localization Oocyte, Granulosa, Theca, Luteal cells
Comment Luderer U, et al reported he localization of glutamate cysteine ligase subunit mRNA within the rat ovary and relationship to follicular apoptosis. Ovarian levels of the antioxidant tripeptide glutathione (GSH) increase following gonadotropin administration, suggesting that GSH synthesis in the ovary may be associated with follicular growth. In situ hybridization with (35)S-labeled riboprobes was used to localize ovarian mRNA expression of the catalytic and modulatory subunits of glutamate cysteine ligase (Gclc and Gclm), the rate-limiting enzyme in GSH synthesis, during each stage of the rat estrous cycle. Gclm was highly expressed in the granulosa cells and oocytes of healthy, growing follicles, not in atretic follicles. Gclc was also highly expressed in follicles; however, unlike Gclm, Gclc was also expressed in corpora lutea and interstitial cells. In a subsequent experiment, the hypothesis that GSH synthesis occurs in healthy, but not in apoptotic, follicles was tested. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to detect apoptotic cells in the ovaries, and in situ hybridization for Gclm and Gclc was performed in adjacent sections of the same ovaries. TUNEL staining was found to be significantly associated with absence of Gclm hybridization in granulosa cells and oocytes and with lack of strong Gclc hybridization in granulosa cells. These results suggest that follicular apoptosis may be associated with down-regulation of Gclm and Gclc transcription in granulosa cells and oocytes.
Follicle stages Antral, Preovulatory, Corpus luteum
Comment Gonadotropin Regulation of Glutamate Cysteine Ligase Catalytic and Modifier Subunit Expression in the Rat Ovary is Subunit and Follicle Stage-Specific. Tsai-Turton M, et al have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after PMSG and after an ovulatory gonadotropin stimulus. 24h after PMSG there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48h later by 10 IU hCG. GCLm protein and mRNA levels increased dramatically from 0h to 4h after hCG, then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. Gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.
Phenotypes
Mutations 2 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: subfertile
Comment: Lack of Maternal Glutamate Cysteine Ligase Modifier Subunit (Gclm) Decreases Oocyte Glutathione Concentrations and Disrupts Preimplantation Development in Mice. Nakamura BN et al. Glutathione (GSH) is the most abundant intracellular thiol and an important regulator of cellular redox status. Mice that lack the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH synthesis. Nicotinamide nucleotide transhydrogenase, an inner mitochondrial membrane protein, catalyzes the interconversion of reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate; reduced nicotinamide adenine dinucleotide phosphate is required for reduction of GSH disulfide. Previous work supports roles for GSH in preimplantation development. We hypothesized that Gclm-/- mice have increased preimplantation embryonic mortality and that this effect is enhanced by absence of a functioning Nnt gene. Gclm-/- females produced significantly fewer pups per litter than Gclm+/+ littermates. Numbers of oocytes ovulated in a natural estrous cycle or upon superovulation did not differ by genotype. Fewer uterine implantation sites were observed in the Gclm-/- females. Prepubertal Gclm-/- and Gclm+/+ females were superovulated, then mated overnight with a Gclm+/+ male. At 0.5 d postcoitum, Gclm-/- females had significantly lower percentages of zygotes with two pronuclei and higher percentages of zygotes with one pronucleus than Gclm+/+ or Gclm+/- females. At 3.5 d postcoitum, a significantly lower percentage of blastocyst stage embryos was recovered from uteri of Gclm-/- females than Gclm+/+ females. Embryonic development to the blastocyst stage, but not the two-cell stage, was significantly decreased after in vitro fertilization of oocytes from Gclm-/- females compared with Gclm+/+ females. The Nnt mutation did not enhance the effects of Gclm genotype on female fertility. These results demonstrate critical roles for maternal GSH in supporting normal preimplantation development.

Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: Glutamate cysteine ligase modifier subunit (Gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure. Lim J et al. (2015) Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm-/- mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/GSSG redox potential in Gclm-/- versus Gclm+/+ ovaries. Prepubertal Gclm-/- and Gclm+/+ mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm-/- mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm-/- ovaries compared to controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2 month old Gclm-/- versus Gclm+/+ ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm-/- mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: June 11, 2003, 6:19 a.m. by: hsueh   email:
home page:
last update: Jan. 21, 2020, 1:36 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form