General Comment |
NCBI Summary:
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which integrate signals between receptors and effector proteins, are composed of an alpha, a beta, and a gamma subunit. These subunits are encoded by families of related genes. This gene encodes a beta subunit. Beta subunits are important regulators of alpha subunits, as well as of certain signal transduction receptors and effectors. This gene uses alternative polyadenylation signals.
|
Comment |
Williams CJ, et al reported G protein gene expression during mouse oocyte growth and maturation, and preimplantation embryo development.
Using a reverse transcription-polymerase chain reaction (RT-PCR) assay, the relative levels of mRNAs encoding specific G protein alpha, beta, and gamma subunits were determined in meiotically incompetent oocytes, fully-grown competent oocytes, metaphase II-arrested eggs, one-, two-, and eight-cell embryos, and blastocysts. mRNA transcripts representing all of the heterotrimeric G protein families were present at all of the stages examined, and all underwent significant changes in their patterns of expression. The following heterotrimeric G protein mRNA transcripts were present in oocytes, eggs, or preimplantation embryos: G alpha q family (q, 11, and 14), G alpha 12 family (12 and 13), G alpha i family (i1, i2, i3, t2, z, and s), beta subunits 1, 2, 4, and 5, and gamma subunits 2, 3, 5, and 7. A recently described large molecular weight G protein, G alpha h (Nakaoka et al., 1994: Science 264:1593-1596), was also present, G alpha 15, G alpha t1, G alpha olf, G alpha oA, G beta 3, G gamma 1, and G gamma 8 mRNA transcripts were not detected using this method. The most common pattern of expression observed was a maturation-associated decrease followed by an increase after the two-cell stage. Some transcripts, however, were expressed at low levels until the eight-cell to blastocyst stages, whereas others were expressed at high levels in the oocyte but following maturation declined and remained at a low level throughout preimplantation development.
|