Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

forkhead box O3 OKDB#: 1902
 Symbols: FOXO3 Species: human
 Synonyms: FOXO2, AF6q21, FKHRL1, FOXO3A, FKHRL1P2  Locus: 6q21 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/threonine kinase AKT1 (OMIM 164730), which then phosphorylates and inactivates components of the apoptotic machinery, including BAD (603167) and caspase-9 (602234). AKT1 also regulates the activity of FKHRL1. In the presence of survival factors, AKT1 phosphorylates FKHRL1, leading to the association of FKHRL1 with 14-3-3 proteins and its retention in the cytoplasm. Survival factor withdrawal leads to FKHRL1 dephosphorylation, nuclear translocation, and target gene activation. Within the nucleus, FKHRL1 most likely triggers apoptosis by inducing the expression of genes that are critical for cell death.

NCBI Summary: This gene belongs to the forkhead family of transcription factors which are characterized by a distinct forkhead domain. This gene likely functions as a trigger for apoptosis through expression of genes necessary for cell death. Translocation of this gene with the MLL gene is associated with secondary acute leukemia. Alternatively spliced transcript variants encoding the same protein have been observed. [provided by RefSeq, Jul 2008]
General function DNA binding, Transcription factor
Comment Altered FoxO3 expression and apoptosis in granulosa cells of women with polycystic ovary syndrome. Mikaeili S et al. (2016) To determine the level of apoptosis, and alteration of FoxO3 (forkhead box O3 transcription factor) expression and phosphorylation in human granulosa cells amongst polycystic ovary syndrome (PCOS) patients and control group. We recruited infertile women with PCOS (n = 14) and compared them with infertile women due to tubal blockage or male factor infertility (n = 14, controls). GnRH agonist and gonadotropins were used for ovarian stimulation. Follicular fluids from large follicles (>16 mm) were pooled and granulosa cells (GCs) were isolated using cell strainer methodology. Apoptosis of purified GCs was measured by flow cytometry using Annexin V and propidium iodide. Quantitative real-time PCR and western blotting were performed to assess alteration of FoxO3 expression and phosphorylation in GCs. There were higher percentages of early and late apoptosis in GCs of PCOS patients than in the control group. FoxO3 mRNA level and total FoxO3 protein were significantly higher in PCOS group than in the control group. The ratio of p-FoxO3/total FoxO3 decreased significantly in PCOS than in the control group. It was inferred that unphosphorylated (active form) FoxO3 was higher in GCs of PCOS patients. Apoptosis was significantly and positively correlated with the total FoxO3 and negatively correlated with the p-FoxO3 protein levels in PCOS patients. Activation and overexpression of FoxO3 in granulosa cells of PCOS women correlated with higher apoptosis levels in these cells suggesting that FoxO3 may be a candidate for the higher apoptosis in granulosa cells from women with PCOS.//////////////////
Cellular localization Cytoplasmic, Nuclear
Comment candidate123
Ovarian function Follicle development, Initiation of primordial follicle growth, Follicle atresia, Oogenesis, Early embryo development
Comment Hypoxia induces the dormant state in oocytes through expression of Foxo3. Shimamoto S et al. (2019) In mammals, most immature oocytes remain dormant in the primordial follicles to ensure the longevity of female reproductive life. A precise understanding of mechanisms underlying the dormancy is important for reproductive biology and medicine. In this study, by comparing mouse oogenesis in vivo and in vitro, the latter of which bypasses the primordial follicle stage, we defined the gene-expression profile representing the dormant state of oocytes. Overexpression of constitutively active FOXO3 partially reproduced the dormant state in vitro. Based on further gene-expression analysis, we found that a hypoxic condition efficiently induced the dormant state in vitro. The effect of hypoxia was severely diminished by disruption of the Foxo3 gene and inhibition of hypoxia-inducible factors. Our findings provide insights into the importance of environmental conditions and their effectors for establishing the dormant state.////////////////// FOXO3 Knockdown Accelerates Development of Bovine Primordial Follicles. Bao RM et al. The objective of the present study was to elucidate the involvement of FOXO3 in the activation of bovine primordial follicles. In immunohistochemistry, FOXO3 was detected in all of the oocytes in primordial and primary follicles. The FOXO3 decreased after treatment with FOXO3 small interfering RNAs (siRNAs). Ovarian tissues containing dominantly primordial follicles were treated with FOXO3 siRNAs and then xenografted to severe combined immune deficiency (SCID) mice. Two months after xenografting, some primordial follicles developed to the secondary and tertiary stages, and the total percentage of these developing follicles (secondary and tertiary follicles: 18 ? 7%) was higher than in the control grafts treated with control siRNA (7 ? 1%). It is thought that bovine primordial follicle activation is regulated by the FOXO3-dependent mechanism and that knockdown of FOXO3 induces the release of primordial follicles from FOXO3 suppression, initiating their growth. Knockdown of FOXO3 induces primordial oocyte activation in pigs. Moniruzzaman M et al. Mammalian ovaries are endowed with a large number of primordial follicles, each containing a non-growing oocyte. Only a small population of primordial oocytes (oocytes in primordial follicles) is activated to enter the growth phase throughout a female's reproductive life. Little is known about the mechanism regulating the activation of primordial oocytes. Here, we found that the primordial oocytes from infant pigs (10- to 20-day-old) grew to full size at 2 months after xenografting to immunodeficient mice, whereas those from prepubertal pigs (6-month-old) survived without initiation of their growth even after 4 months; thereafter, they started to grow and reached full size after 6 months. These results suggest that the mechanism regulating the activation of primordial oocytes in prepubertal pigs is different from that in infant pigs. In this regard, the involvement of FOXO3A, a forkhead transcription factor, was studied. In prepubertal pigs, FOXO3A was detected in almost all (94 +/- 2%) primordial oocyte nuclei, and in infant pigs, 42 +/- 7% primordial oocytes were FOXO3A-positive. At 4 months after xenografting, the percentage of FOXO3A-positive primordial oocytes from prepubertal pigs had decreased to the infant level. Further, siRNA was designed to knock down porcine FOXO3A. FOXO3A-knockdown primordial follicles from prepubertal pigs developed to the antral stage accompanied by oocyte growth at 2 months after xenografting. These results suggest that primordial oocytes are dormant in prepubertal pigs by a FOXO3-related mechanism to establish a non-growing oocyte pool in the ovary, and that a transient knockdown of the FOXO3 activates the primordial oocytes to enter the growth phase. Specificity of the requirement for Foxo3 in primordial follicle activation. John GB et al. Primordial follicles are long-lived structures assembled early in life. The mechanisms that control the balance between the conservation and the activation of primordial follicles are critically important for fertility and dictate the onset of menopause. The forkhead transcription factor Foxo3 serves an essential role in these processes by suppressing the growth of primordial follicles, thereby preserving them until later in life. While other factors regulating primordial follicle growth have been described, most serve multiple functions at several stages of female germ cell or follicle development, and corresponding mouse mutants exhibit pleiotropic phenotypes with disruption of multiple stages of follicle assembly, development, or survival. To investigate the possibility that Foxo3 also functions in other aspects of ovarian development beyond its known role in primordial follicle activation (PFA), we performed detailed analyses of mouse ovaries including electron microscopy to study primordial follicle structure, assembly, and early growth. These analyses revealed that the timing of primordial follicle assembly, early oocyte survival, and the expression of early germ line markers were unaffected in early Foxo3 ovaries. Taken together, these studies demonstrate that the phenotype associated with Foxo3 deficiency is remarkably specific for PFA and further support the placement of Foxo3 in a unique phenotypic class among mammalian female sterile mutants. Lastly, we discuss the implications of the specificity of this mutant phenotype with regard to the hypothesis that oocyte regeneration may occur in adults and serves as a means to replenish oocytes lost via natural physiological processes. Characterization of a mechanism to inhibit ovarian follicle activation. Barilovits SJ 2014 et al. OBJECTIVE To demonstrate that a small molecule can induce the transcription factor Foxo3 in the ovary and lead to inhibition of follicle activation. DESIGN Cell culture, organ culture, and animal studies. SETTING University-based laboratory. ANIMAL(S) 23 female C57BL/6 mice. INTERVENTION(S) Human ovary cells and mouse ovaries in culture treated with 2-deoxyglucose (2-DG) to mimic glucose deprivation, and mice intraperitoneally injected with 100 mg/kg, 300 mg/kg, or 600 mg/kg 2-DG daily for 2 weeks. MAIN OUTCOME MEASURE(S) In cell and organ culture, Foxo3 expression analyzed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR); in treated animals, expression of genes regulated by nutrient deprivation (Foxo3, ATF4, GRP78, CHOP, ASNS, c-Myc) measured in brain, kidney, and ovary by qRT-PCR; and ovarian follicles histologically classified and counted. RESULT(S) Foxo3 expression is induced by 2-DG at both the mRNA and protein level in human ovarian cell culture, possibly through ATF4-dependent gene regulation. Foxo3 expression is also induced by 2-DG in ovarian organ culture. Treatment of mice with 100 mg/kg 2-DG resulted in a 2.6 fold induction of Foxo3 in the ovary and a 58% decrease in type 3a primary follicles. CONCLUSION(S) Expression of Foxo3 is induced by nutrient deprivation in cell culture, organ culture, and in?vivo. In mice, 2-DG treatment results in an inhibition of primordial follicle activation. These data indicate that Foxo3 induction by 2-DG may be useful for fertility preservation. ///////////////////////// Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Reddy P et al. Although communications between mammalian oocytes and their surrounding granulosa cells mediated by the Kit-Kit ligand (KL, or stem cell factor, SCF) system have been proven to be crucial for follicular development, Kit downstream signaling pathways in mammalian oocytes are largely unknown. In this study, by using ovaries and isolated oocytes from postnatal mice and rats, we demonstrated for the first time that components of the PI3 kinase pathway, the serine/threonine kinase Akt (PKB) which enhances cellular proliferation and survival, and an Akt substrate FKHRL1 which is a transcription factor that leads to apoptosis and cell cycle arrest, are expressed in mammalian oocytes. By using an in vitro oocytes culture system, we found that oocytes-derived Akt and FKHRL1 are regulated by SCF. Treatment of cultured oocytes with SCF cannot only rapidly phosphorylate and activate Akt, but also simultaneously phosphorylate and may therefore functionally suppress FKHRL1, through the action of PI3 kinase. Together with our in situ hybridization and immunohistochemistry data that Akt and FKHRL1 are mostly expressed in oocytes in primordial and primary ovaries and reports that FKHRL1 gene-deficient mice exhibited excessive activation from primordial to primary follicles as well as enlarged oocyte sizes, we suppose that in mammalian oocytes, actions of granulosa cell derived SCF on primordial to primary follicle transition and subsequent follicle development may involve activation of Akt and inhibition of FKHRL1 activities in oocytes. The role of oocyte's Akt may be to enhance follicle development and the role of oocyte's FKHRL1 may be to inhibit follicle development. We propose that the cascade from granulosa cell SCF to oocyte Kit-PI3 kinase-Akt-FKHRL1 may play an important role to regulate the growth rate of mammalian oocytes and hypothetically also the oocyte secretion of factors that may regulate the activation and early development of ovarian follicles. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Di Emidio G 2014 et al. STUDY QUESTION Is SIRT1 involved in the oxidative stress (OS) response in mouse oocytes? SUMMARY ANSWER SIRT1 plays a pivotal role in the adaptive response of mouse germinal vesicle (GV) oocytes to OS and promotes a signalling cascade leading to up-regulation of the MnSod gene. WHAT IS KNOWN ALREADY OS is known to continuously threaten acquisition and maintenance of oocyte developmental potential during in vivo processes and in vitro manipulations. Previous studies in somatic cells have provided strong evidence for the role of SIRT1 as a sensor of the cell redox state and a protector against OS and aging. STUDY DESIGN, SIZE, DURATION GV oocytes obtained from young (4-8 weeks) and reproductively old (48-52 weeks) CD1 mice were blocked in the prophase stage by 0.5 M cilostamide. Groups of 30 oocytes were exposed to 25 M H2O2 and processed following different times for the analysis of intracellular localization of SIRT1 and FOXO3A, and evaluation of Sirt1, miRNA-132, FoxO3a and MnSod gene expression. Another set of oocytes was cultured in the presence or absence of the SIRT1-specific inhibitor Ex527, and exposed to H2O2 in order to assess the involvement of SIRT1 in the activation of a FoxO3a-MnSod axis and ROS detoxification. In the last part of this study, GV oocytes were maturated in vitro in the presence of different Ex527 concentrations (0, 2.5, 5, 10, 20 M) and assessed for maturation rates following 16 h. Effects of Ex527 on spindle morphology and ROS levels were also evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS SIRT1 and FOXO3A intracellular distribution in response to OS was investigated by immunocytochemistry. Real-time RT-PCR was employed to analyse Sirt1, miR-132, FoxO3a and MnSod gene expression. Reactive oxygen species (ROS) production was evaluated by in vivo measurement of carboxy-H2DCF diacetate labelling. Spindle and chromosomal distribution in in vitro matured oocytes were analysed by immunocytochemistry and DNA fluorescent labelling, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Specific changes in the intracellular localization of SIRT1 and up-regulation of Sirt1 gene were detected in mouse oocytes in response to OS. Moreover, increased intracellular ROS were observed when SIRT1 activity was inhibited by Ex527. In aged oocytes Sirt1 was expressed more than in young oocytes but SIRT1 protein was undetectable. Upon OS, significant changes in miR-132 micro-RNA, a validated Sirt1 modulator, were observed. A negative correlation between Sirt1 mRNA and miR-132 levels was observed when young oocytes exposed to OS were compared with young control oocytes, and when aged oocytes were compared with young control oocytes. FoxO3a and MnSod transcripts were increased upon OS with the same kinetics as Sirt1 transcripts, and up-regulation of MnSod gene was prevented by oocyte treatment with Ex527, indicating that SIRT1 acts upstream to the FoxO3a-MnSod axis. Finally, the results of the in vitro maturation assay suggested that SIRT1 might be involved in oocyte maturation by regulating the redox state and ensuring normal spindle assembly. LIMITATIONS, REASONS FOR CAUTION The main limitation of this study was the absence of direct quantification of SIRT1 enzymatic activity due to the lack of an appropriately sensitive method. WIDER IMPLICATIONS OF THE FINDINGS The present findings may provide a valuable background for studying the regulation of SIRT1 during oogenesis and its relevance as a sensor of oocyte redox state and energy status. The antioxidant response orchestrated by SIRT1 in oocytes seems to decrease with aging. This suggests that SIRT1 could be an excellent pharmacological target for improving oocyte quality and IVF outcome in aging or aging-like diseases. STUDY FUNDING/COMPETING INTERESTS The work was supported by the Ministero dell'Universit e della Ricerca Scientifica (MIUR) to C.T., F.A., C.D., A.M.D. The authors declare no conflict of interest. ///////////////////////// FOXO3a is involved in the apoptosis of naked oocytes and oocytes of primordial follicles from neonatal rat ovaries. Liu H et al. Inhibition of the forkhead transcription factor, FOXO3a, can promote the transition from primordial to primary follicle and subsequent follicle development in mammalian ovaries. Stem cell factor (SCF) initiates anti-apoptotic signaling from its membrane receptor, c-kit, to Bcl-2 family members through PI3K/AKT in oocytes of primordial follicles. However, whether FOXO3a mediates the apoptosis of naked oocytes and oocytes of primordial follicles remains unknown. In the present study, oocytes from nests and primordial follicles from neonatal rat ovaries were cultured, and oocyte apoptosis was examined using the TUNEL technique. The pro-apoptotic action of FOXO3a and the potential signal transduction pathways were investigated using RT-PCR, Western blot, and immunocytochemistry. Culturing oocytes in the presence of SCF did not affect the level of total FOXO3a protein, but rapidly elevated the level of phosphorylated FOXO3a (indicating functional suppression). As phosphorylated FOXO3a increased, oocyte apoptosis was inhibited. The specific PI3K/Akt inhibitor, LY 294002, abolished the phosphorylation of FOXO3a and the anti-apoptotic action of SCF. SCF down-regulated the expression of p27KIP1 and pro-apoptotic factors such as Bim, Bad, and Bax, and this activity was reversed by LY 294002. SCF up-regulated the expression of MnSOD, which was also inhibited by LY 294002. However, SCF had no effect on Bcl-2 protein. These results suggest that FOXO3a is involved in oocyte apoptosis in the neonatal rat ovary, and the SCF-PI3K/Akt-FOXO3a signaling pathway mediates oocyte apoptosis and primordial follicle formation. Evidence that FOXO3a is involved in oocyte apoptosis in the neonatal rat ovary. Sui XX et al.
Expression regulated by FSH, Steroids, Growth Factors/ cytokines, PRL, Wnt3a, kitL, microRNA
Comment Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. Cho SH et al. (2017) MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation.////////////////// Regulation of FOXO3 subcellular localization by Kit ligand in the neonatal mouse ovary. Ezzati MM et al. (2015) Foxo3 protein is required in the oocyte nucleus for the maintenance of primordial follicles in a dormant state. PI3K/AKT-dependent phosphorylation of Foxo3 leads to its relocalization to the cytoplasm and subsequent follicular activation. However, the nature of the upstream signals controlling Foxo3 activity and subcellular localization remains unknown. We aimed to study the in vitro effects of Kit ligand (stem cell factor) on the subcellular localization of Foxo3 in primordial follicles within the postnatal mouse ovary. This was an in vitro study using explants of intact neonatal mouse ovaries. The study was performed in laboratory animal facility and basic science research laboratory at a University Hospital. The animals used for this study were FVB mice. Neonatal FVB mice ovaries at postnatal day 7 (PD7) were harvested and incubated in culture medium (DMEM) at 37 °C and 5 % CO2 for 60-90 min with (n = 3) or without (n = 3) Kit ligand at 150 ng/mL (8 nM). Similar experimental conditions were used to establish a dose-response curve for the effects of Kit ligand and assess the effects of imatinib (small molecule inhibitor of the Kit receptor). Immunofluorescence was used to identify the subcellular location of Foxo3 in oocytes. Proportions of cytoplasmic versus nuclear Foxo3 in primordial follicles were determined. Kit ligand treatment increased the cytoplasmic localization of Foxo3 from 40 % in the untreated ovaries to 74 % in the treated group (p = 0.007 in paired samples and p = 0.03 in unpaired samples). Furthermore, this effect was reversible with imatinib (p = 0.005). A dose-response curve for Kit ligand treatment showed that maximum effect was seen at 150 ng/mL. Kit ligand treatment in vitro increases the proportion of cytoplasmic Foxo3 in primordial follicles at PD7, lending support to the idea that Kit receptor/ligand controls Foxo3 activity in the context of primordial follicle activation.////////////////// Wnt/?catenin Signaling Regulates Follicular Development by Modulating the Expression of Foxo3a Signaling Components. Li L 2013 et al. Wnt signaling is an evolutionarily conserved pathway that regulates cell proliferation, differentiation and apoptosis. To investigate the possible role of Wnt signaling in the regulation of ovarian follicular development, secondary follicles were isolated and cultured in vitro in the presence or absence of its activator (LiCl or Wnt3a) or inhibitor (IWR-1). We have demonstrated that activation of ?catenin signals by activators dramatically suppressed follicular development by increasing granulosa cell apoptosis and inhibiting follicle steroidogenesis. In contrast, inhibition of Wnt signaling by IWR-1 was observed with better developed follicles and increased steroidogenesis. Further studies have shown that the transcription factor Forkhead box O3a (Foxo3a) and its downstream target molecules were modulated by the activators or the inhibitor. These findings provide evidence that Wnt signaling might negatively regulate follicular development potentially through Foxo3a signaling components. ///////////////////////// Testosterone Induces Redistribution of Forkhead Box-3a and Down-Regulation of Growth and Differentiation Factor 9 Messenger Ribonucleic Acid Expression at Early Stage of Mouse Folliculogenesis. Yang JL et al. Increasing evidence has shown that excess androgen may be a main cause of polycystic ovary syndrome (PCOS). However, the molecular mechanism of androgen action on the ovary is unclear. To investigate the possible impacts of androgen on early follicular development, neonatal mouse ovaries mainly containing primordial follicles were cultured with testosterone. We demonstrated that the number of primary follicles was increased after 10 d culture with testosterone treatment via phosphatidylinositol 3-kinase/Akt pathway. Androgen induced Forkhead box (Foxo)-3a activation, and translocation of Foxo3a protein from oocyte nuclei to cytoplasm, which might be a key step for primordial follicle activation. Interestingly, testosterone was also capable of down-regulating growth and differentiation factor-9 expression via its receptor. In summary, we infer that intraovarian excess androgen in PCOS might result in excess early follicles by inducing oocyte Foxo3a translocation and follicular arrest by down-regulating growth and differentiation factor-9 expression. Prolactin Signaling Through the Short Form of Its Receptor Represses FOXO3 and its Target Gene Galt Causing a Severe Ovarian Defect. Halperin J et al. Prolactin is a hormone with over 300 biological activities. Although the signaling pathway downstream of the long form of its receptor (RL) has been well characterized, little is known about PRL actions upon activation of the short form (RS). Here, we show that mice expressing only RS exhibit an ovarian phenotype of accelerated follicular recruitment followed by massive follicular death leading to premature ovarian failure (POF). Consequently, RS-expressing ovaries of young adults are depleted of functional follicles and formed mostly by interstitium. We also show that activation of RS represses the expression of the transcription factor FOXO3 and that of the enzyme galactose-1-phosphate urydiltransferase (Galt), two proteins known to be essential for normal follicular development. Our finding that FOXO3 regulates the expression of Galt and enhances its transcriptional activity indicates that it is the repression of FOXO3 by PRL acting through RS that prevent Galt expression in the ovary and causes follicular death. Co-expression of RL with RS prevents PRL inhibition of Galt, and the ovarian defect is no longer seen in RS transgenic mice that co-express RL, suggesting that RL prevents RS-induced ovarian impairment. In summary, we show that prolactin signals through RS and causes, in absence of RL, a severe ovarian pathology by repressing the expression of FOXO3 and that of its target gene Galt. We also provide evidence of a link between the POF seen in mice expressing RS, in mice with FOXO3 gene deletion as well as in human with Galt mutation.
Ovarian localization Oocyte, Granulosa
Comment FOXO1, FOXO3, AND FOXO4 are differently expressed during mouse oocyte maturation and preimplantation embryo development. Kuscu N et al. (2015) Preimplantation embryo development is affected by its environment. FoxO transcription factors are regulated by PI3K/Akt signaling pathway that essentially supports growth and development. FoxO transcription factors are at the interface of crucial cellular processes, orchestrating programs of gene expression that regulate apoptosis, cell-cycle arrest, oxidative stress resistance, DNA repair, glucose metabolism, and differentiation. In the presence of growth factors, FoxO transcription factors are localized in the cytoplasm, whereas under stress conditions they move to the nucleus and trigger transcriptional activities of their target genes. The aim of the present study is to investigate whether FoxO transcription factors are present during in vivo oocyte maturation and preimplantation embryo development. Presence and localizations of FoxO1, FoxO3 and FoxO4 proteins have been determined with immunofluorescence staining. Our results have confirmed that FoxO1, FoxO3 and FoxO4 proteins are differentially expressed in prophase I, metaphase I, metaphase II oocytes, as well as in fertilized oocyte, 2-cell embryo, 4-cell embryo, 8-cell embryo, morula, and blastocyst. FoxOs translocate to nucleus in embryos with developmental delay. Our findings indicate that FoxO transcription factors are present during both oocyte and embryo in vivo maturation and provide fundamental knowledge that FoxOs may regulate in vitro embryo development under stress conditions.////////////////// Richards JS, et al 2002 reported the expression of FKHR, FKHRL1, and AFX Genes in the Rodent Ovary and Evidence for Regulation by IGF-I, Estrogen, and the Gonadotropins. This study was undertaken to determine if during ovarian follicular development FSH regulates putative targets of PKB and Sgk, namely specific Forkhead transcription factor family members. Using in vivo and in vitro mouse and rat models, the authors show 1) that FKHR [Forkhead homolog of rhabdomysarcoma = Forkhead box binding protein (Foxo1), FKHRL1 (Forkhead-like protein-1 = Foxo3), and AFX (a Forkhead transcription factor = Foxo4); all defined according to the Human and Mouse Gene Nomenclature Committee) are expressed in the rodent ovary.
Follicle stages
Comment Expression and Function of Apoptosis Initiator FOXO3 in Granulosa Cells During Follicular Atresia in Pig Ovaries. Matsuda F et al. In mammalian ovaries, most follicles are lost by atresia before ovulation. It has become apparent that the apoptosis of granulosa cells induces follicular atresia. Forkhead box O3 (FOXO3), also called FKHRL1 (forkhead in rhabdomyosarcoma-like 1), is a proapoptotic molecule that belongs to the FOXO subfamily of forkhead transcription factors. Foxo3-deficient female mice were reported to be infertile because of abnormal ovarian follicular development, but the precise influences of FOXO3 on follicular atresia of mature ovary have not been determined. Therefore, we examined the expression and function of FOXO3 in porcine ovarian follicles and granulosa-derived cells. FOXO3 mRNA levels in granulosa cells of porcine ovaries increased during atresia, while FOXO3 protein was abundant in granulosa cells of early atretic follicles. By immunohistochemistry, the inner surface area of the granulosa layer in early atretic follicles was strongly stained with anti-FOXO3 antibody. The granulosa cells expressing FOXO3 coincided with apoptotic cells, indicating a role of FOXO3 as a proapoptotic factor in granulosa cells of porcine ovaries. In porcine (JC-410) and human (KGN) granulosa-derived cells, cell death was induced by transfection of FOXO3 expression vectors. Expression of the proapoptotic factors Fas ligand (FASLG) and BCL2-like 11 (BCL2L11) was upregulated by FOXO3 in KGN cells. In conclusion, FOXO3 is expressed in porcine ovarian follicles and induces apoptosis in granulosa cells, suggesting that it is a candidate for the initiator of follicular atresia. Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. Chen YJ et al. Transforming growth factor (TGF) beta1 facilitates FSH-induced differentiation of rat ovarian granulosa cells. The signaling crosstalk between follicle stimulating hormone (FSH) and TGFbeta receptors remains unclear. This study was to investigate the interplay of cAMP/protein kinase A (PKA) and phosphatidylinositol-3-kinase (PI3K) signaling including mammalian target of rapamycin (mTOR)C1 dependence in FSH- and TGFbeta1-stimulated steroidogenesis in rat granulosa cells. To achieve this aim, inhibitors of PKA (PKAI), PI3K (wortmannin), and mTORC1 (rapamycin) were employed. PKAI and wortmannin suppressions of the FSH-increased progesterone production were partly attributed to decreased level of 3beta-HSD, and their suppression of the FSH plus TGFbeta1 effect was attributed to the reduction of all the three key players, steroidogenic acute regulatory (StAR) protein, P450scc, and 3beta-HSD. Further, FSH activated the PI3K pathway including increased integrin-linked kinase (ILK) activity and phosphorylation of Akt(S473), mTOR(S2481), S6K(T389), and transcription factors particularly FoxO1(S256) and FoxO3a(S253), which were reduced by wortmannin treatment but not by PKAI. Interestingly, PKAI suppression of FSH-induced phosphorylation of cAMP regulatory element-binding protein (CREB(S133)) disappeared in the presence of wortmannin, suggesting that wortmannin may affect intracellular compartmentalization of signaling molecule(s). In addition, TGFbeta1 had no effect on FSH-activated CREB and PI3K signaling mediators. We further found that rapamycin reduced the TGFbeta1-enhancing effect of FSH-stimulated steroidogenesis, yet it exhibited no effect on FSH action. Surprisingly, rapamycin displayed a suppressive effect at concentrations that had no effect on mTORC1 activity. Together, this study demonstrates a delicate interplay between cAMP/PKA and PI3K signaling in FSH and TGFbeta1 regulation of steroidogenesis in rat granulosa cells. Furthermore, we demonstrate for the first time that TGFbeta1 acts in a rapamycin-hypersensitive and mTORC1-independent manner in augmenting FSH-stimulated steroidogenesis in rat granulosa cells.
Phenotypes PCO (polycystic ovarian syndrome)
POF (premature ovarian failure)
Mutations 13 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: subfertile
Comment: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Hosaka T et al. Genetic analysis in Caenorhabditis elegans has uncovered essential roles for DAF-16 in longevity, metabolism, and reproduction. The mammalian orthologs of DAF-16, the closely-related FOXO subclass of forkhead transcription factors (FKHR/FOXO1, FKHRL1/FOXO3a, and AFX/FOXO4), also have important roles in cell cycle arrest, apoptosis and stress responses in vitro, but their in vivo physiological roles are largely unknown. To elucidate their role in normal development and physiology, we disrupted each of the Foxo genes in mice. Foxo1-null embryos died on embryonic day 10.5 as a consequence of incomplete vascular development. Foxo1-null embryonic and yolk sac vessels were not well developed at embryonic day 9.5, and Foxo1 expression was found in a variety of embryonic vessels, suggesting a crucial role of this transcription factor in vascular formation. On the other hand, both Foxo3a- and Foxo4-null mice were viable and grossly indistinguishable from their littermate controls, indicating dispensability of these two members of the Foxo transcription factor family for normal vascular development. Foxo3a-null females showed age-dependent infertility and had abnormal ovarian follicular development. In contrast, histological analyses of Foxo4-null mice did not identify any consistent abnormalities. These results demonstrate that the physiological roles of Foxo genes are functionally diverse in mammals.

Species: human
Mutation name: None
type: naturally occurring
fertility: fertile
Comment: Sequence variation at the human FOXO3 locus: a study of premature ovarian failure and primary amenorrhea. Gallardo TD et al. BACKGROUND: The forkhead transcription factor Foxo3 is a master regulator and potent suppressor of primordial follicle activation. Loss of Foxo3 function in the mouse leads to premature ovarian failure (POF) due to global follicle activation. METHODS AND RESULTS: Here, we show that the mouse Foxo3 locus is haploinsufficient, and that Foxo3-/+ females undergo early reproductive senescence consistent with an increased rate of primordial follicle utilization. Then, to determine if heterozygous or homozygous polymorphisms or mutations of the human orthologue FOXO3 contribute to POF or idiopathic primary amenorrhea (PA), we sequenced the exons and flanking splice sequences of the gene in a large number of women with idiopathic POF (n = 273) or PA (n = 29). A total of eight single-nucleotide polymorphisms (SNPs) were identified, revealing a substantial amount of genetic variation at this locus. Allelic frequencies in control samples excluded several of these variants as causal. For the remaining variants, site-directed mutagenesis was performed to assess their functional impact. However, these rare sequence variants were not associated with significant decreases in FOXO3 activity. CONCLUSIONS: Taken together, our findings suggest that, despite the potential for FOXO3 haploinsufficiency to cause ovarian failure, FOXO3 mutations or common SNPs are not a common cause of either POF or PA.

Species: mouse
Mutation name: None
type: null mutation
fertility: subfertile
Comment: Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. John GB et al. In mammals, oocytes are packaged into compact structures-primordial follicles-which remain inert for prolonged intervals until individual follicles resume growth via a process known as primordial follicle activation. Here we show that the phosphoinositide 3-kinase (PI3K) signalling pathway controls primordial follicle activation through the forkhead transcription factor Foxo3. Within oocytes, Foxo3 is regulated by nucleocytoplasmic shuttling. Foxo3 is imported into the nucleus during primordial follicle assembly, and is exported upon activation. Oocyte-specific ablation of Pten resulted in PI3K-induced Akt activation, Foxo3 hyperphosphorylation, and Foxo3 nuclear export, thereby triggering primordial follicle activation, defining the steps by which the PI3K pathway and Foxo3 control this process. Inducible ablation of Pten and Foxo3 in adult oocytes using a new tool for genetic analysis of the germline, Vasa-Cre(ERT2), showed that this pathway functions throughout life. Thus, a principal physiologic role of the PI3K pathway is to control primordial follicle activation via Foxo3.FOXO1/3 Depletion in Granulosa Cells Alters Follicle Growth, Death and Regulation of Pituitary FSH. Liu Z et al. The Forkhead boxO (FOXO) transcription factors regulate multiple cellular functions. FOXO1 and FOXO3 are highly expressed in granulosa cells of ovarian follicles. Selective depletion of the Foxo1 and Foxo3 genes in granulosa cells of mice reveals a novel ovarian-pituitary endocrine feedback loop characterized by: 1) undetectable levels of serum FSH but not LH, 2) reduced expression of the pituitary Fshb gene and its transcriptional regulators, and 3) ovarian production of a factor(s) that suppresses pituitary cell Fshb expression. Equally notable, and independent of FSH, microarray analyses and quantitative PCR document that depletion of Foxo1/3 alters the expression of specific genes associated with follicle growth vs. apoptosis by disrupting critical and selective regulatory interactions of FOXO1/3 with the activin or bone morphogenetic protein 2 (BMP2) pathways, respectively. As a consequence, both granulosa cell proliferation and apoptosis were decreased. These data provide the first evidence that FOXO1/3 divergently regulate follicle growth or death by interacting with the activin or BMP pathways in granulosa cells and by modulating pituitary FSH production.

Species: human
Mutation name: None
type: naturally occurring
fertility: subfertile
Comment: Analysis of FOXO3 mutation in 114 Chinese women with premature ovarian failure. Wang B et al. This study screened FOXO3 coding regions for mutations in a sample of 114 Chinese women with premature ovarian failure and discovered six novel single-nucleotide variants: c.71C>A (p.Pro24His), c.140C>T (p.Pro47Leu), c.184G>A (p.Asp62Asn), c.1652C>T (p.Ser551Phe), c.1697C>G (p.Gly566Ala) and c.1185G>A (silent). The nonsynonymous single-nucleotide variants, c.71C>A (p.Pro24His), c.140C>T (p.Pro47Leu), c.184G>A (p.Asp62Asn), c.1652C>T (p.Ser551Phe) and c.1697C>G (p.Gly566Ala), were not detected in any of 100 controls. These missense mutations might cause abnormal oocyte apoptosis and primordial follicle activation, thereby adversely affecting early follicle depletion in the ovary.

Species: mouse
Mutation name: None
type: null mutation
fertility: infertile - ovarian defect
Comment: A missense mutation in the transcription factor Foxo3a causes teratomas and oocyte abnormalities in mice. Youngson NA et al. An N-ethyl-N-nitrosourea random mutation screen was used to identify recessive modifiers of gene silencing in the mouse using an epigenetically sensitive reporter transgene. One of the mutant lines, MommeR1, was identified as a suppressor of variegation and it showed female-specific age-associated infertility in homozygotes. Linkage analysis identified a region on chromosome 10, containing the Foxo3a gene, previously shown to play a critical role in female gametogenesis. Foxo3a is a transcription factor with roles in cell cycle control, apoptosis, neural and hematopoietic cell differentiation, and DNA repair. Sequencing of the Foxo3a gene in MommeR1 mice revealed a point mutation that causes an amino acid substitution in the highly conserved Forkhead DNA-binding domain. In vitro transcription assays showed that the point mutation causes loss of FOXO3a transactivation activity. Compound heterozygotes made with Foxo3a-null mice (carrying the targeted deletion of exon 2) displayed complementation with respect to both the activation of the reporter transgene and defects in folliculogenesis similar to those seen in MommeR1 homozygotes, supporting the conclusion that this is the causative mutation. Approximately one in six female MommeR1 homozygotes develop teratomas, a phenotype not reported in Foxo3a-null mice. Ovulated oocytes from MommeR1 homozygotes display a number of abnormalities. The MommeR1 mice provide a novel platform to investigate teratocarcinogenesis and link Foxo3a with parthenogenesis and ovarian cancer. The finding of Foxo3a as a modifier of epigenetic reprogramming is discussed.

Species: human
Mutation name: None
type: naturally occurring
fertility: subfertile
Comment: Mutational screening of FOXO3A and FOXO1A in women with premature ovarian failure. Watkins WJ et al. FOXO3A and FOXO1A are excellent candidate genes for the development of premature ovarian failure and have not been analyzed previously in POF patients. Potentially causal mutations in FOXO3A (2/90; 2.2%) and FOXO1A (1/90; 1.1%) were identified in POF patients; however, the pathological role of these mutations will be determined only by screening increased numbers of patients and controls, or by functional studies.

Species: mouse
Mutation name: None
type: targeted overexpression
fertility: fertile
Comment: Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice. Pelosi E et al. During female reproductive life, ovarian follicle reserve is reduced by maturation and atresia until menopause ensues. Foxo3 is required to maintain the ovarian reserve in mice. Here we show that overexpression of constitutively active FOXO3 can increase ovarian reproductive capacity in mice. We find increased follicle numbers and decreased gonadotropin levels in aging FOXO3-transgenic mice compared with wild-type littermates, suggesting maintenance of a greater ovarian reserve. Based on cumulative progeny in aging animals, we find 31-49% increased fertility in transgenic females. The gene expression profile of Foxo3-/- knockout ovaries appears older than that of wild-type littermates, and the transgene induces a younger-looking profile, restoring much of the wild-type transcriptome. This is the first gain-of-function model of augmented reproductive reserve in mice, thus emphasizing the role of Foxo3 as a guardian of the ovarian follicle pool in mammals and a potential determinant of the onset of menopause.

Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: Castrillon DH, et al 2003 reported the suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Foxo transcription factors have been implicated in diverse biological processes, including metabolism, cellular stress responses, and aging. Here, we show that Foxo3a-/- female mice exhibit a distinctive ovarian phenotype of global follicular activation leading to oocyte death, early depletion of functional ovarian follicles, and secondary infertility. Foxo3a thus functions at the earliest stages of follicular growth as a suppressor of follicular activation. In addition to providing a molecular entry point for studying the regulation of follicular growth, these results raise the possibility that accelerated follicular initiation plays a role in premature ovarian failure, a common cause of infertility and premature aging in women.

Species: mouse
Mutation name:
type: targeted overexpression
fertility: subfertile
Comment: Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Liu L et al. In recent years, mammalian oocytes have been proposed to have important roles in the orchestration of ovarian follicular development and fertility. To determine whether intra-oocyte Foxo3a, a component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, influences follicular development and female fertility, a transgenic mouse model was generated with constitutively active Foxo3a expressed in oocytes. We found that the female transgenic mice were infertile, which was caused by retarded oocyte growth and follicular development, and anovulation. Further mechanistic studies revealed that the constitutively active Foxo3a in oocytes caused a dramatic reduction in the expression of bone morphogenic protein 15 (Bmp15), connexin 37 and connexin 43, which are important molecules for the establishment of paracrine and gap junction communications in follicles. Foxo3a was also found to facilitate the nuclear localization of p27(kip1) in oocytes, a cyclin-dependent kinase (Cdk) inhibitor that may serve to inhibit oocyte growth. The results from the current study indicate that Foxo3a is an important intra-oocyte signaling molecule that negatively regulates oocyte growth and follicular development. Our study may therefore give some insight into oocyte-borne genetic aberrations that cause defects in follicular development and anovulation in human diseases, such as premature ovarian failure.

Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: Generation of Foxo3-targeted Mice by Injection of mRNAs Encoding Transcription Activator-like Effector Nucleases (TALENs) into Zygotes. Zhu P et al. (2015) In this study, for exploring the mechanism of forkhead box O3(Foxo3) participating in regulation of the activation of primordial oocytes, Foxo3-targeted mice were generated by injection of mRNAs encoding transcription activator-like effector nucleases (TALENs) into mouse zygotes. The TALEN sites were designed with high conservative homologous region among pig, bovine, buffalo and mouse by commercial bio-companies. The TALENs mutagenic non-homologous end-joining (NHEJ) repair activity were determined to be 31.3% in human embryonic kidney 293T (HEK-293T) cells by dual luciferase reporter assay system. Then, we firstly injected TALEN-mRNAs into the cytoplasm of mouse zygotes by micromanipulation, and four of 48 mouse blastocysts were identified as mutation by sequencing. Subsequently, by the method of TALEN-mRNAs injected into the zygotes with pronucleus micromanipulation technique, we obtained seven Foxo3 mutants of 20 FVB/NJ backgrounds mice which were Foxo3-independent alleles with frameshift and deletion mutations. It was very interesting that all seven were heterozygous mutants (Foxo3(-/+) ), and the gene mutagenesis rates of the mice reached 35%. The five Foxo3 mutant females were all infertile in the following 6 months after birth. The histological examination results showed that there were rare primordial follicles and primary follicles in the ovary of Foxo3 mutant compared to that of wide-type female mice. Moreover, one of two mutant males was subfertile and another was fertile normally. Those results suggested that the mutant of Foxo3 severely affected the fertile ability of female and perhaps male in some degree; furthermore, an even more efficient TALENs-based gene mutation method has been established to be poised to revolutionize the study of mouse and other species genetics.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development. Liu Z et al. (2015) The Forkhead Box, FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown herein, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation. Immunostaining and Western blot analyses confirmed FOXO1 and PTEN depletion, maintenance of GATA4 and nuclear localization of FOXL2 and phospho-SMAD2/3 in the tumor cells, recapitulating results we observed in human adult GCTs. Microarray and q-PCR analyses of mouse GCTs further confirmed expression of specific genes (Foxl2, Gata4, Wnt4) controlling granulosa cell fate specification and proliferation whereas others (Emx2, Nr0b1, Rspo1, Wt1) were suppressed. Key genes (Amh, Bmp2, Fshr,) controlling follicle growth, apoptosis and differentiation were also suppressed. Inhbb and Grem1 were selectively elevated whereas reduction of Inha provided additional evidence that activin signaling and SMAD2/3 phosphorylation impact GCT formation. Unexpectedly, markers of Sertoli /epithelial cells (SOX9/KRT8) and alternatively activated macrophages (CHI3L3) were elevated in discrete subpopulations within the mouse GCTs, indicating that Foxo1/3/Pten depletion not only leads to GCTs but also to altered granulosa cell fate decisions and immune responses. Thus, analyses of the Foxo1/3/Pten mouse GCTs and human adult GCTs provide strong evidence that impaired functions of the FOXO1/3/PTEN pathways lead to dramatic changes in the molecular program within granulosa cells, chronic activin signaling in the presence of FOXL2 and GATA4, and tumor formation.//////////////////

Species: mouse
Mutation name:
type: targeted overexpression
fertility: fertile
Comment: Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice. Pelosi E et al. (2013) During female reproductive life, ovarian follicle reserve is reduced by maturation and atresia until menopause ensues. Foxo3 is required to maintain the ovarian reserve in mice. Here we show that overexpression of constitutively active FOXO3 can increase ovarian reproductive capacity in mice. We find increased follicle numbers and decreased gonadotropin levels in aging FOXO3-transgenic mice compared with wild-type littermates, suggesting maintenance of a greater ovarian reserve. Based on cumulative progeny in aging animals, we find 31-49% increased fertility in transgenic females. The gene expression profile of Foxo3-/- knockout ovaries appears older than that of wild-type littermates, and the transgene induces a younger-looking profile, restoring much of the wild-type transcriptome. This is the first gain-of-function model of augmented reproductive reserve in mice, thus emphasizing the role of Foxo3 as a guardian of the ovarian follicle pool in mammals and a potential determinant of the onset of menopause.//////////////////

Species: human
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility. Yamamoto H et al. (2017) The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. Thirty-one patients aged <40 years (13 with unexplained infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: July 8, 2003, 12:57 p.m. by: hsueh   email:
home page:
last update: March 22, 2020, 1:44 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form