Webster et al. (1993) identified a novel member of the serine/threonine protein kinase gene family, designated sgk, for serum and glucocorticoid-regulated kinase, in a differential screen for glucocorticoid-inducible transcripts expressed in the Con8.hd6 rat mammary tumor cell line. sgk encodes a protein of 49 kDa which has significant sequence homology (45 to 55% identity) throughout its catalytic domain with rac protein kinase, the protein kinase C family, ribosomal protein S6 kinase, and cyclic AMP-dependent protein kinase. Waldegger et al. (1997) also characterized genes that are transcriptionally regulated by the cellular hydration state. They isolated a cDNA, termed SGK, that encodes a putative 431-amino acid protein with a molecular mass of 49 kD.
NCBI Summary:
This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion. High levels of expression of this gene may contribute to conditions such as hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]
sgk mRNA is expressed in most adult rat tissues, with the highest levels in the thymus, ovary, and lung. sgk mRNA was stimulated by glucocorticoids and by serum within 30 min, and both inductions were independent of de novo protein synthesis.
SGK phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation at the meiotic G2/M transition. Hiraoka D et al. (2019) The kinase cyclin B-Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B-Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1 and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A-Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B-Cdk1 activation, cyclin A-Cdk1 is nonessential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation in starfish oocytes. Upon hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gβγ-PI3K pathway and an unidentified pathway downstream of Gβγ, called the atypical Gβγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.//////////////////
Expression regulated by
FSH
Comment
Gonzalez-Robayna et al. (1999) reported that FSH induced Sgk in cultured rat granulosa cells in a biphasic manner in which the protein was nuclear at 1 h and cytoplasmic at 48 h.
Ovarian localization
Oocyte, Granulosa
Comment
Age-related differences in the translational landscape of mammalian oocytes. Del Llano E et al. (2020) Increasing maternal age in mammals is associated with poorer oocyte quality, involving higher aneuploidy rates and decreased developmental competence. Prior to resumption of meiosis, fully developed mammalian oocytes become transcriptionally silent until the onset of zygotic genome activation. Therefore, meiotic progression and early embryogenesis are driven largely by translational utilization of previously synthesized mRNAs. We report that genome-wide translatome profiling reveals considerable numbers of transcripts that are differentially translated in oocytes obtained from aged compared to young females. Additionally, we show that a number of aberrantly translated mRNAs in oocytes from aged females are associated with cell cycle. Indeed, we demonstrate that four specific maternal age-related transcripts (Sgk1, Castor1, Aire and Eg5) with differential translation rates encode factors that are associated with the newly forming meiotic spindle. Moreover, we report substantial defects in chromosome alignment and cytokinesis in the oocytes of young females, in which candidate CASTOR1 and SGK1 protein levels or activity are experimentally altered. Our findings indicate that improper translation of specific proteins at the onset of meiosis contributes to increased chromosome segregation problems associated with female ageing.//////////////////
By in situ hybridization, Alliston et al. (1997) show that sgk expression in the rat ovary is selectively localized to granulosa cells. In culture, FSH or forskolin, activators of the protein kinase A (PKA) pathway, rapidly (2 h) and transiently increased sgk mRNA levels in undifferentiated granulosa cells. Sgk mRNA exhibited a biphasic expression pattern, with maximal levels observed at 48 h of FSH/forskolin as granulosa cells differentiate to the preovulatory phenotype. Deletion analyses using sgk promoter-reporter constructs (-4.0 kb to -35 bp) identified a region between -63 and -43 bp that mediated FSH and forskolin-responsive transcription in undifferentiated and differentiated granulosa cells.
Changes in mouse granulosa cell gene expression during early luteinization. McRae RS et al. Changes in gene expression during granulosa cell luteinization have been measured using serial analysis of gene expression (SAGE). Immature normal mice were treated with pregnant mare serum gonadotropin (PMSG) or PMSG followed, 48 h later, by human chorionic gonadotropin (hCG). Granulosa cells were collected from preovulatory follicles after PMSG injection or PMSG/hCG injection and SAGE libraries generated from the isolated mRNA. The combined libraries contained 105,224 tags representing 40,248 unique transcripts. Overall, 715 transcripts showed a significant difference in abundance between the two libraries of which 216 were significantly down-regulated by hCG and 499 were significantly up-regulated. Among transcripts differentially regulated, there were clear and expected changes in genes involved in steroidogenesis as well as clusters of genes involved in modeling of the extracellular matrix, regulation of the cytoskeleton and intra and intercellular signaling. The SAGE libraries described here provide a base for functional investigation of the regulation of granulosa cell luteinization.