Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

neurofilament, heavy polypeptide OKDB#: 1980
 Symbols: NEFH Species: human
 Synonyms: NFH, NFH|  Locus: 22q12.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: Neurofilaments are type IV intermediate filament heteropolymers composed of light, medium, and heavy chains. Neurofilaments comprise the axoskeleton and functionally maintain neuronal caliber. They may also play a role in intracellular transport to axons and dendrites. This gene encodes the heavy neurofilament protein. This protein is commonly used as a biomarker of neuronal damage and susceptibility to amyotrophic lateral sclerosis (ALS) has been associated with mutations in this gene. [provided by RefSeq, Oct 2008]
General function Cytoskeleton
Comment
Cellular localization Cytoskeleton
Comment
Ovarian function Oocyte maturation
Comment
Expression regulated by
Comment Polycystic ovary syndrome (PCOS) affects 5% of reproductive aged women and is the leading cause of anovulatory infertility. A hallmark of PCOS is excessive theca cell androgen secretion, which is directly linked to the symptoms of PCOS. Our previous studies demonstrated that theca cells from PCOS ovaries maintained in long term culture persistently secrete significantly greater amounts of androgens than normal theca cells, suggesting an intrinsic abnormality. Furthermore, previous studies suggested that ovarian hyperandrogenemia is inherited as an autosomal dominant trait. However, the genes responsible for ovarian hyperandrogenemia of PCOS have not been identified. In this present study, Wood JR, et al carried out microarray analysis to define the gene networks involved in excess androgen synthesis by the PCOS theca cells in order to identify candidate PCOS genes. Analysis revealed that PCOS theca cells have a gene expression profile that is distinct from normal theca cells. Included in the cohort of genes with increased mRNA abundance in PCOS theca cells were aldehyde dehydrogenase 6 and retinol dehydrogenase 2, which play a role in all-trans-retinoic acid biosynthesis and the transcription factor GATA6. We demonstrated that retinoic acid and GATA6 increased the expression of 17alpha-hydroxylase, providing a functional link between altered gene expression and intrinsic abnormalities in PCOS theca cells. Thus, the analyses have 1) defined a stable molecular phenotype of PCOS theca cells, 2) suggested new mechanisms for excess androgen synthesis by PCOS theca cells, and 3) identified new candidate genes that may be involved in the genetic etiology of PCOS. This is one of the genes with Altered mRNA Abundance in PCOS Theca Cells as compared with normal theca cells Maintained Under Basal Conditions.
Ovarian localization Oocyte
Comment The Involvement of Neurofilament Heavy Chain Phosphorylation in the Maturation and Degeneration of Rat Oocytes. Takahashi N et al. Neurofilaments (NF) are intermediate filament proteins that were originally found to be expressed in neurons and are involved in the maintenance of axonal structure. However, there has not been much research on the expression and physiological significance of NF in other organs. In the present study, we examined the expression of NF in rat ovaries and found that NF heavy chain (NF-H) was expressed in oocytes of follicles from the primary to mature stages, ovulated oocytes, fertilized zygotes, and degenerative oocytes of atretic follicles. Cytoplasmic NF-H disappeared at the two-cell stage of embryonic development, whereas degenerative oocytes of atretic follicles continued to express NF-H even after fragmentation. An antibody that specifically recognizes phosphorylated NF-H (pNF-H) was used to examine the pattern of NF-H phosphorylation in oocytes. pNF-H was detected in the cytoplasm and nuclei of oocytes of mature and atretic follicles, ovulated oocytes, and one-cell zygotes. Treatment with 3,3'-iminodipropionitrile, which induces aberrant phosphorylation of NF in the perikarya of neurons and causes neuropathy, induced oocyte degeneration with follicular atresia, phosphorylation of NF-H in oocytes, and ovarian gene expression of cyclin-dependent kinase 5, a candidate kinase of NF-H. However, an indicator of neuron degeneration, Fluoro-Jade C, failed to stain the pNF-H-immunopositive oocytes. Our results indicate that NF-H expressed in oocytes may be involved in the maintenance of oocyte structure during follicular growth and that the phosphorylation of NF-H in ephemeral oocytes may contribute to the degeneration process of oocytes.
Follicle stages Primordial, Primary, Secondary, Antral, Preovulatory
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: July 22, 2003, 4:33 p.m. by: Rami   email:
home page:
last update: Feb. 10, 2012, 3:05 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form