NCBI Summary:
This gene encodes a H1 histone binding protein that is involved in transporting histones into the nucleus of dividing cells. Multiple isoforms are encoded by transcript variants of this gene. The somatic form is expressed in all mitotic cells, is localized to the nucleus, and is coupled to the cell cycle. The testicular form is expressed in embryonic tissues, tumor cells, and the testis. In male germ cells, this protein is localized to the cytoplasm of primary spermatocytes, the nucleus of spermatids, and the periacrosomal region of mature spermatozoa.
General function
Cell organization, Nuclear organization
Comment
Cellular localization
Cytoplasmic, Nuclear
Comment
Ovarian function
Comment
Expression regulated by
Comment
Polycystic ovary syndrome (PCOS) affects 5% of reproductive aged women and is the leading cause of anovulatory infertility. A hallmark of PCOS is excessive theca cell androgen secretion, which is directly linked to the symptoms of PCOS. Our previous studies demonstrated that theca cells from PCOS ovaries maintained in long term culture persistently secrete significantly greater amounts of androgens than normal theca cells, suggesting an intrinsic abnormality. Furthermore, previous studies suggested that ovarian hyperandrogenemia is inherited as an autosomal dominant trait. However, the genes responsible for ovarian hyperandrogenemia of PCOS have not been identified. In this present study, Wood JR, et al carried out microarray analysis to define the gene networks involved in excess androgen synthesis by the PCOS theca cells in order to identify candidate PCOS genes. Analysis revealed that PCOS theca cells have a gene expression profile that is distinct from normal theca cells. Included in the cohort of genes with increased mRNA abundance in PCOS theca cells were aldehyde dehydrogenase 6 and retinol dehydrogenase 2, which play a role in all-trans-retinoic acid biosynthesis and the transcription factor GATA6. We demonstrated that retinoic acid and GATA6 increased the expression of 17alpha-hydroxylase, providing a functional link between altered gene expression and intrinsic abnormalities in PCOS theca cells. Thus, the analyses have 1) defined a stable molecular phenotype of PCOS theca cells, 2) suggested new mechanisms for excess androgen synthesis by PCOS theca cells, and 3) identified new candidate genes that may be involved in the genetic etiology of PCOS. This is one of the genes with Altered mRNA Abundance in PCOS Theca Cells as compared with normal theca cells Maintained Under Basal Conditions.
Ovarian localization
Oocyte, Theca
Comment
NASP, a linker histone chaperone that is required for cell proliferation. Richardson RT et al. A multichaperone nucleosome remodeling complex that contains the H1 linker histone chaperone NASP has recently been described. Linker histones (H1) are required for the proper completion of normal development and NASP transports H1 histones into nuclei and exchanges H1 histones with DNA. Consequently we investigated whether NASP is required for normal cell cycle progression and development. We now report that without sufficient NASP HeLa cells and U2OS cells are unable to replicate their DNA and progress through the cell cycle and that the NASP-/- null mutation causes embryonic lethality. Although the null mutation NASP-/- caused embryonic lethality, null embryos survive until the blastocyst stage, which may be explained by the presence of stored NASP protein in the cytoplasm of oocytes. We conclude from this study that NASP and therefore the linker histones are key players in the assembly of chromatin after DNA replication.