Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

metal regulatory transcription factor 1 OKDB#: 2046
 Symbols: MTF1 Species: human
 Synonyms: ZRF, MTF-1  Locus: 1p34.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment The metallothioneins are small cysteine-rich proteins that bind heavy metal ions such as zinc, cadmium, and copper with high affinity, and have been functionally implicated in heavy metal detoxification and radical scavenging. Transcription of metallothionein genes is induced by exposure of cells to heavy metals. This induction is mediated by metal-responsive promoter elements (MREs). Westin and Schaffner (1988) and Radtke et al. (1993) cloned a mouse transcription factor, designated MTF-1, that binds to these metal-responsive promoter elements.

NCBI Summary: This gene encodes a transcription factor that induces expression of metallothioneins and other genes involved in metal homeostasis in response to heavy metals such as cadmium, zinc, copper, and silver. The protein is a nucleocytoplasmic shuttling protein that accumulates in the nucleus upon heavy metal exposure and binds to promoters containing a metal-responsive element (MRE). [provided by RefSeq, Jul 2008]
General function DNA binding, Transcription factor
Comment
Cellular localization Nuclear
Comment
Ovarian function Antral follicle growth
Comment A T > G Mutation in the NR5A2 Gene Is Associated With Litter Size in Hu Sheep Through Upregulation of Promoter Activity by Transcription Factor MTF-1. Li Y et al. (2019) Nuclear receptor subfamily 5 group A member 2 (NR5A2), also referred to as LRH-1 or FTF, is an orphan nuclear hormone receptor that is involved in regulating embryonic development, ovarian granulosa cell differentiation, gonadal sex differentiation, and steroidogenesis in mammals. However, little is known about how NR5A2 regulates reproduction in sheep. In this study, we amplified the promoter sequence of NR5A2 and determined that its core promoter region ranged from -721 nt to -281 nt. A T > G polymorphism at -700 nt was detected in the core promoter region. Association analysis found that the litter sizes of Hu ewes at their second and average parities with genotype GG (2.20 ± 0.20 and 1.97 ± 0.06, respectively) were significantly higher than those of ewes with genotype TG (1.68 ± 0.10 and 1.74 ± 0.05, respectively) (p < 0.05) and TT (1.67 ± 0.10 and 1.62 ± 0.06, respectively) (p < 0.05). The litter size of Hu ewes at their third parity with genotype GG (2.10 ± 0.10) was significantly higher than that of ewes with genotype TT (1.56 ± 0.12) (p < 0.05). A luciferase assay showed that the -700G allele increased the luciferase activity relative to the -700T allele. Furthermore, the -700T > G polymorphism created a novel binding site for metal-regulatory transcription factor 1 (MTF-1). A competitive electrophoretic mobility shift assay confirmed that MTF-1 specifically bound with the G-type promoter of NR5A2. An overexpression experiment demonstrated that MTF-1 was involved in the alteration of NR5A2 transcription activity and further increased NR5A2 gene mRNA expression. Our findings revealed that the -700T > G polymorphism promoted NR5A2 expression due to the positive effects on NR5A2 gene transcription activity by MTF-1 and thereby increased fecundity in Hu sheep.//////////////////
Expression regulated by
Comment Polycystic ovary syndrome (PCOS) affects 5% of reproductive aged women and is the leading cause of anovulatory infertility. A hallmark of PCOS is excessive theca cell androgen secretion, which is directly linked to the symptoms of PCOS. Our previous studies demonstrated that theca cells from PCOS ovaries maintained in long term culture persistently secrete significantly greater amounts of androgens than normal theca cells, suggesting an intrinsic abnormality. Furthermore, previous studies suggested that ovarian hyperandrogenemia is inherited as an autosomal dominant trait. However, the genes responsible for ovarian hyperandrogenemia of PCOS have not been identified. In this present study, Wood JR, et al carried out microarray analysis to define the gene networks involved in excess androgen synthesis by the PCOS theca cells in order to identify candidate PCOS genes. Analysis revealed that PCOS theca cells have a gene expression profile that is distinct from normal theca cells. Included in the cohort of genes with increased mRNA abundance in PCOS theca cells were aldehyde dehydrogenase 6 and retinol dehydrogenase 2, which play a role in all-trans-retinoic acid biosynthesis and the transcription factor GATA6. We demonstrated that retinoic acid and GATA6 increased the expression of 17alpha-hydroxylase, providing a functional link between altered gene expression and intrinsic abnormalities in PCOS theca cells. Thus, the analyses have 1) defined a stable molecular phenotype of PCOS theca cells, 2) suggested new mechanisms for excess androgen synthesis by PCOS theca cells, and 3) identified new candidate genes that may be involved in the genetic etiology of PCOS. This is one of the genes with Altered mRNA Abundance in PCOS Theca Cells as compared with normal theca cells Maintained Under Basal Conditions.
Ovarian localization Theca
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: July 22, 2003, 5:25 p.m. by: Rami   email:
home page:
last update: Nov. 26, 2019, 2:12 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form