Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Katanin, P80 Subunit, B1 OKDB#: 2098
 Symbols: KATNB1 Species: human
 Synonyms:  Locus:


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Yang H, et al 2003 reported that MEI-1/katanin is required for translocation of the meiosis I spindle to the oocyte cortex in C. elegans small star, filled. In most animals, successful segregation of female meiotic chromosomes involves sequential associations of the meiosis I and meiosis II spindles with the cell cortex so that extra chromosomes can be deposited in polar bodies. The resulting reduction in chromosome number is essential to prevent the generation of polyploid embryos after fertilization. Using time-lapse imaging of living Caenorhabditis elegans oocytes containing fluorescently labeled chromosomes or microtubules, we have characterized the movements of meiotic spindles relative to the cell cortex. Spindle assembly initiated several microns from the cortex. After formation of a bipolar structure, the meiosis I spindle translocated to the cortex. When microtubules were partially depleted, translocation of the bivalent chromosomes to the cortex was blocked without affecting cell cycle timing. In oocytes depleted of the microtubule-severing enzyme, MEI-1, spindles moved to the cortex, but association with the cortex was unstable. Unlike translocation of wild-type spindles, movement of MEI-1-depleted spindles was dependent on FZY-1/CDC20, a regulator of the metaphase/anaphase transition. We observed a microtubule and FZY-1/CDC20-dependent circular cytoplasmic streaming in wild-type and mei-1 mutant embryos during meiosis. We propose that, in mei-1 mutant oocytes, this cytoplasmic streaming is sufficient to drive the spindle into the cortex. Cytoplasmic streaming is not the normal spindle translocation mechanism because translocation occurred in the absence of cytoplasmic streaming in embryos depleted of either the orbit/CLASP homolog, CLS-2, or FZY-1. These results indicate a direct role of microtubule severing in translocation of the meiotic spindle to the cortex.

NCBI Summary: Microtubules, polymers of alpha and beta tubulin subunits, form the mitotic spindle of a dividing cell and help to organize membranous organelles during interphase. Katanin is a heterodimer that consists of a 60 kDa ATPase (p60 subunit A 1) and an 80 kDa accessory protein (p80 subunit B 1). The p60 subunit acts to sever and disassemble microtubules, while the p80 subunit targets the enzyme to the centrosome. Katanin is a member of the AAA family of ATPases.
General function Cell death/survival, Cell cycle regulation
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Oogenesis, Oocyte maturation
Comment Gene whose expression is detected by cDNA array hybridization: oncogenes, tumor suppressors, cell cycle regulators Rozenn Dalbis-Tran and Pascal Mermilloda
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Aug. 7, 2003, 9:32 a.m. by: hsueh   email:
home page:
last update: July 25, 2006, 2:31 p.m. by: Alex    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form