Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

very low density lipoprotein receptor OKDB#: 2159
 Symbols: VLDLR Species: human
 Synonyms: CAMRQ1, CARMQ1, CHRMQ1, VLDL-R, VLDLRCH  Locus: 9p24.2 in Homo sapiens
HPMR


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The low density lipoprotein receptor (LDLR) gene family consists of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. This gene encodes a lipoprotein receptor that is a member of the LDLR family and plays important roles in VLDL-triglyceride metabolism and the reelin signaling pathway. Mutations in this gene cause VLDLR-associated cerebellar hypoplasia. Alternative splicing generates multiple transcript variants encoding distinct isoforms for this gene. [provided by RefSeq, Aug 2009]
General function Receptor
Comment
Cellular localization Plasma membrane
Comment
Ovarian function Steroid metabolism
Comment
Expression regulated by
Comment
Ovarian localization Granulosa, Theca, Luteal cells
Comment Argov N, et al 2004 reported the expression of mRNA of lipoprotein receptor related protein 8, low density lipoprotein receptor, and very low density lipoprotein receptor in bovine ovarian cells during follicular development and corpus luteum formation and regression. Lipoproteins in the plasma are the major source of cholesterol obtained by the ovarian theca and granulosa cells for steroidogenesis. In this study, we have identified mRNA expression in bovine theca and granulosa cells of two lipoprotein receptors, low density lipoprotein receptor (LDLr) and very low density lipoprotein receptor (VLDLr) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. In the corpus luteum (CL) both these receptors were found in the developing and differentiating stages whereas only mRNA for VLDLr was detected in the regression stage. This study also described for the first time, the presence of lipoprotein receptor related protein (LRP8) in granulosa cells from small antral follicles through preovulatory follicles and in theca cells from large and medium sized antral follicles. This may indicate a role of LRP8 in cholesterol delivery to steriodogenic cells. LRP8 was not detected in any of the CL stages. The roles of the LDLr superfamily in lipid transport to ovarian cells and its participation in follicular and CL development and regression is discussed.
Follicle stages Antral, Preovulatory, Corpus luteum
Comment
Phenotypes POF (premature ovarian failure)
Mutations 1 mutations

Species: human
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: High-resolution array-CGH analysis on 46,XX patients affected by early onset primary ovarian insufficiency discloses new genes involved in ovarian function. Bestetti I et al. (2019) Can high resolution array-CGH analysis on a cohort of women showing a primary ovarian insufficiency (POI) phenotype in young age identify copy number variants (CNVs) with a deleterious effect on ovarian function? This approach has proved effective to clarify the role of CNVs in POI pathogenesis and to better unveil both novel candidate genes and pathogenic mechanisms. POI describes the progression toward the cessation of ovarian function before the age of 40 years. Genetic causes are highly heterogeneous and despite several genes being associated with ovarian failure, most of genetic basis of POI still needs to be elucidated. The current study included 67 46,XX patients with early onset POI (<19 years) and 134 control females recruited between 2012 and 2016 at the Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano. High resolution array-CGH analysis was carried out on POI patients' DNA. Results of patients and female controls were analyzed to search for rare CNVs. All variants were validated and subjected to a gene content analysis and disease gene prioritization based on the present literature to find out new ovary candidate genes. Case-control study with statistical analysis was carried out to validate our approach and evaluate any ovary CNVs/gene enrichment. Characterization of particular CNVs with molecular and functional studies was performed to assess their pathogenic involvement in POI. We identified 37 ovary-related CNVs involving 44 genes with a role in ovary in 32 patients. All except one of the selected CNVs were not observed in the control group. Possible involvement of the CNVs in POI pathogenesis was further corroborated by a case-control analysis that showed a significant enrichment of ovary-related CNVs/genes in patients (P = 0.0132; P = 0.0126). Disease gene prioritization identified both previously reported POI genes (e.g. BMP15, DIAPH2, CPEB1, BNC1) and new candidates supported by transcript and functional studies, such as TP63 with a role in oocyte genomic integrity and VLDLR which is involved in steroidogenesis. ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/); accession numbers SCV000787656 to SCV000787743. This is a descriptive analysis for almost all of the CNVs identified. Inheritance studies of CNVs in some non-familial sporadic cases was not performed as the parents' DNA samples were not available. Addionally, RT-qPCR analyses were carried out in few cases as RNA samples were not always available and the genes were not expressed in blood. Our array-CGH screening turned out to be efficient in identifying different CNVs possibly implicated in disease onset, thus supporting the extremely wide genetic heterogeneity of POI. Since almost 50% of cases are negative rare ovary-related CNVs, array-CGH together with next generation sequencing might represent the most suitable approach to obtain a comprehensive genetic characterization of POI patients. Supported by Italian Ministry of Health grants 'Ricerca Corrente' (08C203_2012) and 'Ricerca Finalizzata' (GR-2011-02351636, BIOEFFECT) to IRCCS Istituto Auxologico Italiano.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Oct. 13, 2003, 5:45 p.m. by: xin   email:
home page:
last update: Jan. 30, 2019, 12:15 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form