Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

MEI1; Meiosis defective 1 OKDB#: 2221
 Symbols: MEI1; Meiosis defective 1 Species: mouse
 Synonyms:  Locus:


For retrieval of Nucleotide and Amino Acid sequences please go to:   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!
R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Libby BJ, et al reported that the mouse meiotic mutation mei1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. mei1 (meiosis defective 1) is the first meiotic mutation in mice derived by phenotype-driven mutagenesis. It was isolated by using a novel technology in which embryonic stem (ES) cells were chemically mutagenized and used to generate families of mice that were screened for infertility. The authors report that mei1/mei1 spermatocytes arrest at the zygotene stage of meiosis I, exhibiting failure of homologous chromosomes to properly synapse. Notably, RAD51 failed to associate with meiotic chromosomes in mutant spermatocytes, despite evidence for the presence of chromosomal breaks. Transcription of genes that are markers for the leptotene and zygotene stages, but not genes that are markers for the pachytene stage, was observed. mei1/mei1 females are sterile, and their oocytes also show severe synapsis defects. Nevertheless, unlike arrested spermatocytes, a small number of mutant oocytes proved capable of progressing to metaphase I and attempting the first meiotic division. However, their chromosomes were unpaired and were not organized properly at the metaphase plate or along the spindle fibers during segregation. mei1 was genetically mapped to chromosome (Chr) 15 in an interval that is syntenic to human Chr 22q13. This region, which has been completely sequenced, contains no known homologs of genes specifically required for meiosis in model organisms. Thus, mei1 may be a novel meiotic gene.

General function
Comment
Cellular localization Nuclear
Comment
Ovarian function Oogenesis, Early embryo development
Comment Phosphorylation of the microtubule-severing AAA+ enzyme Katanin regulates C. elegans embryo development. Joly N et al. (2020) The evolutionarily conserved microtubule (MT)-severing AAA-ATPase enzyme Katanin is emerging as a critical regulator of MT dynamics. In Caenorhabditis elegans, Katanin MT-severing activity is essential for meiotic spindle assembly but is toxic for the mitotic spindle. Here we analyzed Katanin dynamics in C. elegans and deciphered the role of Katanin phosphorylation in the regulation of its activity and stability. Katanin is abundant in oocytes, and its levels drop after meiosis, but unexpectedly, a significant fraction is present throughout embryogenesis, where it is dynamically recruited to the centrosomes and chromosomes during mitosis. We show that the minibrain kinase MBK-2, which is activated during meiosis, phosphorylates Katanin at multiple serines. We demonstrate unequivocally that Katanin phosphorylation at a single residue is necessary and sufficient to target Katanin for proteasomal degradation after meiosis, whereas phosphorylation at the other sites only inhibits Katanin ATPase activity stimulated by MTs. Our findings suggest that cycles of phosphorylation and dephosphorylation fine-tune Katanin level and activity to deliver the appropriate MT-severing activity during development.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 2 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: infertile - ovarian defect
Comment: Libby BJ, et al reported that the mouse meiotic mutation mei1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. mei1/mei1 females are sterile, and their oocytes also show severe synapsis defects. Nevertheless, unlike arrested spermatocytes, a small number of mutant oocytes proved capable of progressing to metaphase I and attempting the first meiotic division. However, their chromosomes were unpaired and were not organized properly at the metaphase plate or along the spindle fibers during segregation.

Species: human
Mutation name:
type: naturally occurring
fertility: infertile - ovarian defect
Comment: Novel biallelic mutations in MEI1: expanding the phenotypic spectrum to human embryonic arrest and recurrent implantation failure. Dong J et al. (2021) Are any novel mutations and corresponding new phenotypes, other than recurrent hydatidiform moles, seen in patients with MEI1 mutations? We identified several novel mutations in MEI1 causing new phenotypes of early embryonic arrest and recurrent implantation failure. It has been reported that biallelic mutations in MEI1, encoding meiotic double-stranded break formation protein 1, cause azoospermia in men and recurrent hydatidiform moles in women. We first focused on a pedigree in which two sisters were diagnosed with recurrent hydatidiform moles in December 2018. After genetic analysis, two novel mutations in MEI1 were identified. We then expanded the mutational screening to patients with the phenotype of embryonic arrest, recurrent implantation failure, and recurrent pregnancy loss, and found another three novel MEI1 mutations in seven new patients from six families recruited from December 2018 to May 2020. Nine primary infertility patients were recruited from the reproduction centers in local hospitals. Genomic DNA from the affected individuals, their family members, and healthy controls was extracted from peripheral blood. The MEI1 mutations were screened using whole-exome sequencing and were confirmed by the Sanger sequencing. In silico analysis of mutations was performed with Sorting Intolerant From Tolerant (SIFT) and Protein Variation Effect Analyzer (PROVEAN). The influence of the MEI1 mutations was determined by western blotting and minigene analysis in vitro. In this study, we identified five novel mutations in MEI1 in nine patients from seven independent families. Apart from recurrent hydatidiform moles, biallelic mutations in MEI1 were also associated with early embryonic arrest and recurrent implantation failure. In addition, we demonstrated that protein-truncating and missense mutations reduced the protein level of MEI1, while the splicing mutations caused abnormal alternative splicing of MEI1. Owing to the lack of in vivo data from the oocytes of the patients, the exact molecular mechanism(s) involved in the phenotypes remains unknown and should be further investigated using knock-out or knock-in mice. Our results not only reveal the important role of MEI1 in human oocyte meiosis and early embryonic development, but also extend the phenotypic and mutational spectrum of MEI1 and provide new diagnostic markers for genetic counseling of clinical patients. This work was supported by the National Key Research and Development Program of China (2018YFC1003800, 2017YFC1001500, and 2016YFC1000600), the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, and 81971382), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Shanghai Health and Family Planning Commission Foundation (20154Y0162), the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine, Ferring Pharmaceuticals and the Chinese Academy of Sciences (FIRMC200507) and the Chongqing Key Laboratory of Human Embryo Engineering (2020KFKT008). No competing interests are declared. N/A.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
Recent Publications
None
Search for Antibody


created: Oct. 30, 2003, 5:52 a.m. by: hsueh   email:
home page:
last update: June 2, 2021, 9:38 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form