NCBI Summary:
Syndecan, a cell surface proteoglycan, is an integral membrane protein acting as a receptor for the extracellular matrix. It is 1 of a group of transmembrane heparan sulfate proteoglycans. Homologs of the human syndecan gene have been identified in mouse, rat, and Chinese hamster.[supplied by OMIM]
General function
Receptor
Comment
Cellular localization
Plasma membrane
Comment
Ovarian function
Luteinization
Comment
Heparan Sulfate Proteoglycans Regulate Responses to Oocyte Paracrine Signals in Ovarian Follicle Morphogenesis. Watson LN et al. In the ovarian follicle, oocyte-secreted factors induce cumulus-specific genes and repress mural granulosa cell specific genes to establish these functionally distinct cell lineages. The mechanism establishing this precise morphogenic pattern of oocyte signaling within the follicle is unknown. The present study investigated a role for heparan sulphate proteoglycans (HSPG) as coreceptors mediating oocyte secreted factor signaling. In vitro maturation of cumulus oocyte complexes in the presence of exogenous heparin, which antagonizes HSPG signaling, prevented cumulus expansion and blocked the induction of cumulus-specific matrix genes, Has2 and Tnfaip6, whereas conversely, the mural granulosa-specific genes, Lhcgr and Cyp11a1, were strongly up-regulated. Heparin also blocked phosphorylation of SMAD2. Exogenous growth differentiation factor (GDF)-9 reversed these heparin effects; furthermore, GDF9 strongly bound to heparin sepharose. These observations indicate that heparin binds endogenous GDF9 and disrupts interaction with heparan sulphate proteoglycan coreceptor(s), important for GDF9 signaling. The expression of candidate HSPG coreceptors, Syndecan 1-4, Glypican 1-6, and Betaglycan, was examined. An ovulatory dose of human chorionic gonadotropin down-regulated Betaglycan in cumulus cells, and this regulation required GDF9 activity; conversely, Betaglycan was significantly increased in luteinizing mural granulosa cells. Human chorionic gonadotropin caused very strong induction of Syndecan 1 and Syndecan 4 in mural granulosa as well as cumulus cells. Glypican 1 was selectively induced in cumulus cells, and this expression appeared dependent on GDF9 action. These data suggest that HSPG play an essential role in GDF9 signaling and are involved in the patterning of oocyte signaling and cumulus cell function in the periovulatory follicle.
Expression regulated by
LH
Comment
Gene expression decreased. Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression. Agca C et al. The LH surge initiates the luteinization of preovulatory follicles and causes hormonal and structural changes that ultimately lead to ovulation and the formation of corpora lutea. The objective of the study was to examine gene expression in ovarian follicles (n = 11) collected from pigs (Sus scrofa domestica) approaching estrus (estrogenic preovulatory follicle; n = 6 follicles from two sows) and in ovarian follicles collected from pigs on the second day of estrus (preovulatory follicles that were luteinized but had not ovulated; n = 5 follicles from two sows). The follicular status within each follicle was confirmed by follicular fluid analyses of estradiol and progesterone ratios. Microarrays were made from expressed sequence tags that were isolated from cDNA libraries of porcine ovary. Gene expression was measured by hybridization of fluorescently labeled cDNA (preovulatory estrogenic or -luteinized) to the microarray. Microarray analyses detected 107 and 43 genes whose expression was decreased or increased (respectively) during the transition from preovulatory estrogenic to -luteinized (P<0.01). Cells within preovulatory estrogenic follicles had a gene-expression profile of proliferative and metabolically active cells that were responding to oxidative stress. Cells within preovulatory luteinized follicles had a gene-expression profile of nonproliferative and migratory cells with angiogenic properties. Approximately, 40% of the discovered genes had unknown function.
Ovarian localization
Cumulus, Granulosa
Comment
This gene was found through a mouse ovarian follicle microarray.
Changes in mouse granulosa cell gene expression during early luteinization. McRae RS et al. Changes in gene expression during granulosa cell luteinization have been measured using serial analysis of gene expression (SAGE). Immature normal mice were treated with pregnant mare serum gonadotropin (PMSG) or PMSG followed, 48 h later, by human chorionic gonadotropin (hCG). Granulosa cells were collected from preovulatory follicles after PMSG injection or PMSG/hCG injection and SAGE libraries generated from the isolated mRNA. The combined libraries contained 105,224 tags representing 40,248 unique transcripts. Overall, 715 transcripts showed a significant difference in abundance between the two libraries of which 216 were significantly down-regulated by hCG and 499 were significantly up-regulated. Among transcripts differentially regulated, there were clear and expected changes in genes involved in steroidogenesis as well as clusters of genes involved in modeling of the extracellular matrix, regulation of the cytoskeleton and intra and intercellular signaling. The SAGE libraries described here provide a base for functional investigation of the regulation of granulosa cell luteinization.