General Comment |
Villaescusa JC, et al reported the expression of Hox cofactor genes during mouse ovarian follicular development and oocyte maturation.
Very little is known about the expression and function of the HOX and HOX-cofactors genes in mammalian oogenesis. The aim of the present study was to determine the expression of PBX and PREP-1 gene products in the mouse ovary and their localization to particular ovarian compartment, specifically the oocyte-containing ovarian follicle. Immunocytochemical analysis demonstrated that PREP-1 was present in both granulosa cells and oocytes. PREP-1 was found in the nucleus in primary oocytes, but in the cytoplasm of fully-grown oocytes; in granulosa cells, however, PREP-1 was always localized to the nuclei. No PREP-1 immunoreactivity was found in corpus luteum, theca or stroma. PBX-1 was found in the cytosol of the oocyte, while PBX-2 expression was mostly restricted to the nuclei of granulosa cells. In addition, PBX-2 was also found in the nucleus of primary oocytes. Since PREP-PBX complexes act in vivo in conjunction with HOX transcription factors, we have used RT-PCR to identify HOX genes expressed in the ovary. This analysis identified transcripts for six HOX genes (A5, A9, B6, B7, C6 and C8) and two more TALE cofactors (PREP2 and Meis2). Thus, a number of HOX and HOX cofactor genes are expressed in the mammalian ovary. The restricted expression pattern for PBX-1 and PBX-2 and the changes in expression and localization of PREP-1 in the oocyte and granulosa cells suggest a previously unsuspected involvement of these transcription factors in oocyte maturation and development, as well as in granulosa cell differentiation.
NCBI Summary:
In vertebrates, the genes encoding the class of transcription factors called homeobox genes are found in clusters named A, B, C, and D on four separate chromosomes. Expression of these proteins is spatially and temporally regulated during embryonic development. This gene is part of the A cluster on chromosome 7 and encodes a DNA-binding transcription factor which may regulate gene expression, morphogenesis, and differentiation. This gene is highly similar to the abdominal-B (Abd-B) gene of Drosophila. A specific translocation event which causes a fusion between this gene and the NUP98 gene has been associated with myeloid leukemogenesis. Two transcript variants encoding different isoforms have been found for this gene.
|