NCBI Summary:
The product encoded by this gene belongs to the heat shock protein 70 family which contains both heat-inducible and constitutively expressed members. The latter are called heat-shock cognate proteins. This gene encodes a heat-shock cognate protein. This protein binds to nascent polypeptides to facilitate correct folding. It also functions as an ATPase in the disassembly of clathrin-coated vesicles during transport of membrane components through the cell. Two alternatively spliced variants have been characterized to date.
General function
Enzyme
Comment
Cellular localization
Cytoplasmic
Comment
Ovarian function
Oogenesis, Oocyte maturation, Early embryo development
Zheng P, et al compared the temporal expression patterns of five housekeeping mRNAs and three transcription factor mRNAs between mouse and rhesus monkey.
Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development. Massicotte L et al. Protein synthesis from maternal mRNA is needed to sustain oocyte maturation and embryo development prior to the maternal-embryonic transition (MET). Therefore, proteins that are expressed throughout this time are important and may be considered as maternal housekeeping proteins (MHKP). Our objectives were first, identify the translated protein patterns of bovine embryo development and secondly, determine the MHKP. Proteins synthesized during oocyte maturation and embryo development (2, 4 and 8-cell stages) were labeled using [S(35)]-Met and [S(35)]-Cys, and visualized by 2-DE. Embryos were cultured with alpha-amanitine to inhibit new transcription. Only 46 proteins were present throughout all stages. Ten spots were identified by MALDI-TOF and MS/MS: HSC71; HSP70; CypA; UCH-L1; GSTM5; Cct5; E-FABP; 2,3-BPGM, ubiquitin-conjugating enzyme E2D3; and beta-actin/gamma-actin. A new method called in silico protein identification confirmation was developed using EST databases. This method is a promising approach for use in rare tissue or from species with an incomplete protein database. This study has revealed that the translated protein patterns show a transition that brings the embryo to the MET. The needs in translated proteins between oocyte maturation and embryo development are different. In summary, this study represents the bases for future proteomics studies on bovine oocytes and embryos.