Kaminski T, et al reported the influence of opioid peptides on steroidogenesis in porcine granulosa cells.
The present studies were undertaken to examine the influence of mu (beta-endorphin, DAMGO, FK 33-824), delta (met-enkephalin, leu-enkephalin, DPLPE) and kappa opioid receptor agonists (dynorphin A, dynorphin B, U 50488) used at different doses (1-1000 nM) alone and in combination with LH (100 ng/ml) on steroidogenesis in porcine granulosa cells derived from large follicles. The effects of mu, delta and kappa receptor agonists on both basal and LH-induced progesterone (P4) secretion were negligible. Agonists of mu opioid receptors reduced basal androstenedione (A4), testosterone (T) and oestradiol (E2) release. Co-treatment with LH entirely abolished the inhibitory effect of these agonists on A4 and E2 secretion and resulted in an increase in T release. The addition of delta receptor agonists was followed by a decrease in basal A4, T and E2 secretion. The cells incubated in the presence of LH increased the androgen production and abrogated the inhibitory effect of delta agonists on E2 output. Basal A4, T and E2 release was also suppressed by kappa receptor agonists. The presence of LH in culture media extended the inhibitory effect of these opioids on E2 output and caused either abolition of the inhibitory influence of kappa agonists or even augmentation of both androgen release in response to the opioids. In conclusion, these data support the involvement of three major types of opioid receptors in the regulation of porcine granulosa cell steroidogenesis.
General function
Receptor
Comment
Cellular localization
Plasma membrane
Comment
Ovarian function
Steroid metabolism
Comment
Expression regulated by
Comment
Ovarian localization
Oocyte, Granulosa
Comment
Expression and localization of opioid receptors during the maturation of human oocytes. Agirregoitia E et al. The endogenous opioid system has been characterized in some female reproductive organs, but little is known about the expression of these receptors in human oocytes. This study investigated the presence and differential distribution of the opioid receptors during the maturation of human oocytes. A total of 821 human oocytes from an intracytoplasmic sperm injection (ICSI) programme were studied including 213 at germinal-vesicle (GV) stage and 164 at metaphase-I (MI) stage and 444 failed fertilization metaphase-II (MII) oocytes. Additionally 31 MII oocytes corresponding to cases where ICSI was not attempted and 50 failed fertilization MII oocytes from the IVF programme were included. Western blot analysis revealed the presence of the delta (OPRD1), kappa (OPRK1) and mu (OPRM1) opioid receptors in human oocytes. The OPRK1 and OPRM1 immunostaining patterns changed during the maturation of the oocyte, while the OPRD1 pattern was the same throughout. In particular, OPRD1 were detected in peripheral tissue from the GV to the MII stage. OPRK1 were found peripherally at the GV stage, more internally at MI and homogeneously at MII. Finally, OPRM1 were located peripherally at the GV stage and homogeneously in MI and MII oocytes. Opioids may have a role in oocyte maturation, acting via receptors. The opioid system has been well characterized in the central nervous system, but it is now known that opioids also act in reproductive organs. However, little is known about the presence and function of this system in human oocytes and its role in their maturation. In this study, we investigated the presence and differential distribution of three (delta, kappa and mu) opioid receptors (proteins which bind the opioids) during the maturation of human oocytes. A total of 821 human oocytes (from 253 patients) not suitable for intracytoplasmic sperm injection (ICSI) or which did not develop into an embryo after ICSI were studied. Thus, we have verified the presence of the delta, kappa and mu opioid receptors in human oocytes. The kappa and mu localization changed during the maturation of the oocyte, while the Delta localization was the same throughout. In particular, the delta receptor was detected in the periphery of the oocyte. On the other hand, the kappa receptor was found peripherally at the beginning, more internally during maturation and homogeneously at the end of maturation. Finally, the Mu receptor was located peripherally at the beginning of maturation and homogeneously in the rest of the maturation stages. This finding suggests a possible role for opioids, acting via receptors, in the maturation of the oocyte.