NCBI Summary:
This gene encodes an intracellular receptor for inositol 1,4,5-trisphosphate. Upon stimulation by inositol 1,4,5-trisphosphate, this receptor mediates calcium release from the endoplasmic reticulum. Mutations in this gene cause spinocerebellar ataxia type 15, a disease associated with an heterogeneous group of cerebellar disorders. Multiple transcript variants have been identified for this gene. [provided by RefSeq, Nov 2009]
General function
Receptor
Comment
Cellular localization
Cytoplasmic, Other Membrane, Nuclear
Comment
Ovarian function
Oocyte maturation
Comment
Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytes. Ito J et al. ABSTRACT During fertilization in mammalian species, a sperm-induced intracellular Ca(2+) signal (Ca(2+)(i)) mediates both exit of meiosis and oocyte activation. Recently, we demonstrated in mouse oocytes that the phosphorylation levels of inositol 1,4,5 trisphosphate receptor type1 (IP(3)R1), the channel responsible for Ca(2+) release and oscillations during fertilization, changed during maturation and fertilization. Therefore, we examined the expression and phosphorylation of IP(3)R1 during in vitro maturation of pig oocytes. Here, our present study shows that expression of IP(3)R1 protein did not change during maturation, although the phosphorylation status of the receptor, specifically at an MPM-2 epitope, did. We found that while at the beginning of maturation IP(3)R1 lacked MPM-2 immunoreactivity, it became MPM-2 reactive by 24 h and reached maximal reactivity by 36 h. Interestingly, the acquisition of MPM-2 reactivity coincided with the activation of p34(cdc2) kinase and mitogen-activated protein kinase (MAPK), which are involved in meiotic progression. Following completion of maturation, inactivation of MAPK by U0126 did not affect IP(3)R1 phosphorylation, although inactivation of p34(cdc2) kinase by roscovitine dramatically reduced IP(3)R1 phosphorylation. Neither inhibitor affected total expression of IP(3)R1. Altogether, our results show that IP(3)R1 undergoes dynamic phosphorylation during maturation and this might underlie the generation of oscillations at fertilization.
Fertilization and Inositol 1,4,5-Trisphosphate (IP3)-Induced Calcium Release in Type-1 Inositol 1,4,5-Trisphosphate Receptor Down-Regulated Bovine Eggs Malcuit C, et al .
It is widely believed that stimulation of the phosphoinositide pathway and production of 1,4,5-inositol trisphosphate (IP(3)) underlies the oscillatory changes in the concentration of intracellular free calcium ions ([Ca(2+)](i)) seen during mammalian fertilization. IP(3) promotes Ca(2+) release in eggs by binding to its receptor, the type-1 IP(3) receptor (IP(3)R-1, also known as ITPR1), a ligand-gated Ca(2+) channel located in the membrane of the endoplasmic reticulum, the main Ca(2+) store of the cell. While IP(3)R-1 has been shown to mediate all Ca(2+) release during mouse fertilization, whether or not it plays such an essential role in fertilization-induced Ca(2+) release in large domestic species such as bovine and porcine is presently not known. Accordingly, we have generated metaphase II bovine eggs with a approximately 70%-80% reduction in the number of intact IP(3)R-1 by inducing receptor down-regulation during oocyte maturation. We did so by injecting the nonhydrolyzable IP(3) analogue, adenophostin A. Functional Ca(2+) release analysis revealed that IP(3)R-1 is the predominant Ca(2+) release channel in bovine eggs, requiring as little as 20% of total intact receptor to mount persistent [Ca(2+)](i) oscillations in response to fertilization, expression of PLCzeta (also known as PLCZ1), and adenophostin A. However, lower concentrations of IP(3) and near-physiological concentrations of porcine sperm extract were unable to trigger [Ca(2+)](i) oscillations in this reduced IP(3)R-1 model. Furthermore, we present evidence that the sensitivity of bovine IP(3)R-1 is impaired at the first embryonic interphase. Together, these results demonstrate the essential role of IP(3)R-1-mediated Ca(2+) release during fertilization in bovine eggs, and identify cell cycle regulatory mechanisms of [Ca(2+)](i) oscillations at the level of IP(3)R-1.
Expression regulated by
Comment
Ovarian localization
Oocyte, Granulosa, Theca, Luteal cells
Comment
The effect of M-phase stage-dependent kinase inhibitors on inositol 1,4,5-trisphosphate receptor 1 (IP3 R1) expression and localization in pig oocytes. Sathanawongs A 2014 et al.
At fertilization, inositol 1,4,5-trisphosphate receptor type 1 (IP3 R1) has a crucial role in Ca(2+) release in mammals. Expression levels, localization and phosphorylation of IP3 R1 are important for its function, but it still remains unclear which molecule(s) regulates IP3 R1 behavior in pig oocytes. We examined whether there was a difference in localization of IP3 R1 after in vitro or in vivo maturation of pig oocytes. In mouse oocytes, large clusters of IP3 R1 were formed in the cortex of the oocyte except in a ring-shaped band of cortex adjacent to the spindle. However, no such clusters of IP3 R1 were observed in pig oocytes and there was no difference in its localization between in vitro and in vivo matured oocytes. We next tried to clarify which factor(s) regulates IP3 R1 localization, phosphorylation and expression using M-phase stage-dependent kinase inhibitors. Our results show that treatments with roscovitine (p34(cdc2) kinase inhibitor) or U0126 (mitogen-activated protein kinase inhibitor) did not affect IP3 R1 expression or localization in pig oocytes, although the latter strongly inhibited phosphorylation. However, treatment with BI-2536, an inhibitor of polo-like kinase 1 (Plk1), dramatically decreased the expression level of IP3 R1 in pig oocytes in a dose-dependent manner. From these results, it is suggested that Plk1 is involved in the regulation of IP3 R1 expression in pig oocytes.
/////////////////////////
Steffl M, et al reported estrous cycle-regulated expression of inositol 1,4,5-trisphosphate receptor type 2 in the pig ovary.
The inositol 1,4,5-trisphosphate receptor type 2 (IP(3)R-2) is an intracellular Ca(2+) release channel responsible for mobilizing of Ca(2+) from intracellular storage sites and plays a key role in biological processes such as fertilization, cell differentiation, and growth. To study the cell-type-specific IP(3)R-2 expression in porcine ovaries during different phases of the oestrous cycle, we used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. A total of 24 ovaries from gilts were collected in early luteal, mid-luteal, and follicular phases of the oestrous cycle. When amplified with the primers common to IP(3)R-2, a RT-PCR product of the expected size (approximately 388bp) was clearly detected in the follicular and early luteal phase of the oestrous cycle, but there was no detectable PCR product in the corpus luteum of the mid-luteal phase of the oestrous cycle. Immunohistochemical studies showed that IP(3)R-2 protein is expressed in granulosa cells and theca cells of growing follicles. IP(3)R-2 immunostaining was first detected during the late pre-antral stage in granulosa and theca cells. Granulosa cell IP(3)R-2 expression increased from the pre-antral to mid-antral stage, but was strongly reduced in pre-ovulatory follicles. In the developing corpus luteum, intense IP(3)R-2 immunostaining was also present in luteal cells, but undetectable in mid-luteal corpora lutea. Furthermore, oocytes, atretic follicles and regressed corpora lutea were negative for IP(3)R-2. Our results indicate that the expression of the IP(3)R-2 protein was downregulated in terminally differentiated granulosa cells of pre-ovulatory follicles when granulosa cells lose follicle-stimulating hormone responsiveness. Therefore, we strongly suggest that IP(3)R-2 may play an important role in the initiation and propagation of intracellular Ca(2+) signals during follicular development of the pig.
Dynamic Changes to the Inositol 1,4,5-Trisphosphate and Ryanodine Receptors during Maturation of Bovine Oocytes Wang L, et al .
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and ryanodine receptor (RyR) have been identified as two ligand-gated calcium channels which play a critical role in mediating calcium release in many different types of cells and tissues. The physiological significance of the two receptors in regulation of intracellular calcium during meiotic maturation and fertilization in the bovine oocyte was evaluated. Metabolic labeling of bovine oocytes by Met-Cys 35S during early and late maturation was followed by immunoprecipitation of both RyR and IP3R using specific antibodies against these two receptors. Results indicate that IP3R is translated throughout the maturation period; in contrast, RyR is only translated during the late maturation period of bovine oocytes. In addition, the experiments reported here investigate the temporal and spatial relationships between these calcium channels and the endoplasmic reticulum (ER) and cortical granules (CG). Immunocytochemistry, fluorescence staining and confocal microscopy were applied at four oocyte developmental stages: the germinal vesicleintact (GV-intact), metaphase I (MI) and metaphase II (MII) stages of maturation and the fertilized egg at 6 h post insemination (hpi). Although oocytes demonstrated some differences in staining patterns and localization, both receptor types showed apparent dynamic changes during meiotic maturation and dramatic decreases in signals after insemination. These results indicate the changes in the number and distribution of IP3R and RyR may account for the increased intracellular calcium responsiveness at fertilization. The IP3R appears to associate with the ER at the sub-vitelline membrane cortex in bovine oocytes. In addition, RyR appears to associate with the CG. In conclusion, although these two receptors may have different functional roles in regulation of calcium release during meiotic maturation and fertilization, it appears that both IP3R and RyR contribute to the significant increase of intracellular calcium during fertilization and activation in the bovine oocyte.
Follicle stages
Secondary, Antral, Preovulatory, Corpus luteum
Comment
Granulosa cells express three inositol 1,4,5-trisphosphate receptor isoforms: cytoplasmic and nuclear Ca2+ mobilization. Diaz-Munoz M et al. ABSTRACT: BACKGROUND: Granulosa cells play an important endocrine role in folliculogenesis. They mobilize Ca2+ from intracellular stores by a coordinated action between 1,4,5 inositol trisphosphate and ryanodine receptors (IP3R and RyR). The aim of this study was to explore the isoforms of IP3Rs expressed in mouse C57BL/6 NHsd granulosa cells, characterizing their intranuclear localization and the relation with other Ca2+-handling proteins. Methods: Ovarian tissue and granulosa cells were analyzed by multiphotonic and confocal microscopy to determine the intracellular presence of IP3R types 1, 2 and 3, RyR, thapsigargin-sensitive Ca2+-ATPase, and endomembranes. Cellular fractionation and Western blot assays were also used to further confirm the nuclear occurrence of the three IP3R isoforms. Free nuclear and cytosolic Ca2+ concentrations were measured using Fluo-4 AM by confocal microscopy. Results: By using antibodies and specific fluorophores, was shown that granulosa cells endomembranes contain three isoforms of IP3R, the RyR, and the thapsigargin-sensitive Ca2+-ATPase (SERCA). Interestingly, all these proteins were also detected in the nuclear envelope and in well-defined intranuclear structures. Microsomal membranes depicted characteristic bands of the 3 types of IP3R, but also variants of lower molecular weight. Analysis of nuclear membranes and nucleoplasmic fraction confirmed the nuclear localization of the IP3R types 1, 2 and 3. We demonstrated ATP-induced Ca2+ transients in the nuclear and cytoplasmic compartments. Remarkably, the inhibitory effect on ATP-induced Ca2+ mobilization of brefeldin A was more accentuated in the cytoplasm than in the nucleus. Conclusion: These findings provide evidence that granulosa cells, including nuclei, express the Ca2+-handling proteins that allow Ca2+ mobilization. All three IP3R were also detected in ovarian slices, including the nuclei of granulosa cells, suggesting that these cells use the three IP3R in situ to achieve their physiological responses.