Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

protein phosphatase 2, regulatory subunit A, alpha OKDB#: 2661
 Symbols: PPP2R1A Species: human
 Synonyms: MRD36, PR65A, PP2AAALPHA, PP2A-Aalpha  Locus: 19q13.41 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment upstream Hippo signaling phosphatase

NCBI Summary: This gene encodes a constant regulatory subunit of protein phosphatase 2. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. The constant regulatory subunit A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit. This gene encodes an alpha isoform of the constant regulatory subunit A. Alternatively spliced transcript variants have been described. [provided by RefSeq, Apr 2010]
General function Tumor suppressor, Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Oocyte maturation
Comment
Expression regulated by
Comment
Ovarian localization Ovarian tumor
Comment Evaluation of DNA from the papanicolaou test to detect ovarian and endometrial cancers. Kinde I et al. Papanicolaou (Pap) smears have revolutionized the management of patients with cervical cancers by permitting the detection of early, surgically curable tumors and their precursors. In recent years, the traditional Pap smear has been replaced by a liquid-based method, which allows not only cytologic evaluation but also collection of DNA for detection of human papillomavirus, the causative agent of cervical cancer. We reasoned that this routinely collected DNA could be exploited to detect somatic mutations present in rare tumor cells that accumulate in the cervix once shed from endometrial or ovarian cancers. A panel of genes that are commonly mutated in endometrial and ovarian cancers was assembled with new whole-exome sequencing data from 22 endometrial cancers and previously published data on other tumor types. We used this panel to search for mutations in 24 endometrial and 22 ovarian cancers and identified mutations in all 46 samples. With a sensitive massively parallel sequencing method, we were able to identify the same mutations in the DNA from liquid Pap smear specimens in 100% of endometrial cancers (24 of 24) and in 41% of ovarian cancers (9 of 22). Prompted by these findings, we developed a sequence-based method to query mutations in 12 genes in a single liquid Pap smear specimen without previous knowledge of the tumor's genotype. When applied to 14 samples selected from the positive cases described above, the expected tumor-specific mutations were identified. These results demonstrate that DNA from most endometrial and a fraction of ovarian cancers can be detected in a standard liquid-based Pap smear specimen obtained during routine pelvic examination. Although improvements need to be made before applying this test in a routine clinical manner, it represents a promising step toward a broadly applicable screening methodology for the early detection of gynecologic malignancies. Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. McConechy MK et al. PPP2R1A mutations have recently been described in 3/42 (7%) of clear cell carcinomas of the ovary. PPP2R1A encodes the a-isoform of the scaffolding subunit of the serine/threonine protein phosphatase 2A (PP2A) holoenzyme. This putative tumour suppressor complex is involved in growth and survival pathways. Through targeted sequencing of PPP2R1A, we identified somatic missense mutations in 40.8% (20/49) of high-grade serous endometrial tumours, and 5.0% (3/60) of endometrial endometrioid carcinomas. Mutations were also identified in ovarian tumours at lower frequencies: 12.2% (5/41) of endometrioid and 4.1% (2/49) of clear cell carcinomas. No mutations were found in 50 high-grade and 12 low-grade serous carcinomas. Amino acid residues affected by these mutations are highly conserved across species and are involved in direct interactions with regulatory B-subunits of the PP2A holoenzyme. PPP2R1A mutations in endometrial high-grade serous carcinomas are a frequent and potentially targetable feature of this disease. The finding of frequent PPP2R1A mutations in high-grade serous carcinoma of the endometrium but not in high-grade serous carcinoma of the ovary provides clear genetic evidence that these are distinct diseases. Copyright ? 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Follicle stages
Comment
Phenotypes
Mutations 2 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: subfertile
Comment: Scaffold Subunit Aalpha of PP2A Is Essential for Female Meiosis and Fertility. Hu MW 2014 et al. Ppp2r1a encodes the scaffold subunit Aa of protein phosphatase 2A (PP2A), which is an important and ubiquitously expressed serine threonine phosphatase family, and plays a critical role in many fundamental cellular processes. To identify the physiological role of PP2A in female germ cell meiosis, we selectively disrupted Ppp2r1a expression in oocytes by using the Cre-Loxp conditional knockout system. Here we report for the first time that oocyte-specific deletion of Ppp2r1a led to severe female subfertility without affecting follicle survival, growth and ovulation. PP2A-Aalpha was essential for regulating oocyte meiotic maturation since depletion of PP2A-Aalpha facilitated germinal vesicle breakdown (GVBD), caused elongation of the MII spindle and precocious separation of sister chromatids. The resulting eggs had high risk of aneuploidy, though they could be fertilized, leading to defective embryonic development, thus subfertility. Our findings provide strong evidence that PP2A-Aalpha within the oocyte plays an indispensable role in oocyte meiotic maturation, though it is dispensable for folliculogenesis in the mouse ovary. /////////////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Yu C et al. (2015) Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Nov. 16, 2004, 2:06 a.m. by: kovarova   email:
home page:
last update: Aug. 25, 2015, 1:28 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form