Destroys radicals which are normally produced within the cells and which are toxic to biological systems. CATALYTIC ACTIVITY:
2 superoxide + 2 H+ = O2 + H2O2.
NCBI Summary:
This gene encodes a member of the superoxide dismutase (SOD) protein family. SODs are antioxidant enzymes that catalyze the dismutation of two superoxide radicals into hydrogen peroxide and oxygen. The product of this gene is thought to protect the brain, lungs, and other tissues from oxidative stress. The protein is secreted into the extracellular space and forms a glycosylated homotetramer that is anchored to the extracellular matrix (ECM) and cell surfaces through an interaction with heparan sulfate proteoglycan and collagen. A fraction of the protein is cleaved near the C-terminus before secretion to generate circulating tetramers that do not interact with the ECM. [provided by RefSeq]
General function
Enzyme
Comment
Cellular localization
Mitochondrial
Comment
Ovarian function
Oogenesis, Oocyte maturation
Comment
Expression regulated by
Comment
Ovarian localization
Oocyte, Cumulus, Granulosa
Comment
Profiling of SOD isoenzymes in compartments of the developing bovine antral follicle. Combelles C et al. The antral follicle constitutes a complex and regulated ovarian microenvironment that influences oocyte quality. Oxidative stress is a cellular state that may play a role during folliculogenesis and oogenesis, although direct supporting evidence is currently lacking. We thus evaluated the expression of the three isoforms (SOD1, 2, 3) of the enzymatic antioxidant superoxide dismutase in all of the cellular (granulosa cells, cumulus cells, oocytes) and extracellular (follicular fluid) compartments of the follicle. Comparisons were performed in bovine ovaries across progressive stages of antral follicular development. Follicular fluid possessed increased amounts of SOD1, 2, 3 in small when compared to large antral follicles; concomitantly, total SOD activity was highest in follicular fluids from smaller diameter follicles. SOD1, 2, and 3 proteins were expressed in granulosa cells without any fluctuations with follicle sizes. All three SOD isoforms were present but distributed differently in oocytes from small, medium, or large antral follicles. Cumulus cells expressed high levels of SOD3, some SOD2, but no detectable SOD1. Our studies provide a temporal and spatial expression profile of the three SOD isoforms in the different compartments of the developing bovine antral follicles. These results lay the ground for future investigations into the potential regulation and roles of antioxidants during folliculogenesis and oogenesis.