Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Thrombopoietin OKDB#: 2694
 Symbols: THPO Species: human
 Synonyms: TPO|MYELOPROLIFERATIVE LEUKEMIA VIRUS ONCOGENE LIGAND|MPL LIGAND|MEGAKARYOCYTE COLONY-STIMULATING FACTOR, MKCSF|MEGAKARYOCYTE GROWTH AND DEVELOPMENT FACTOR, MGDF  Locus: 3q26.3-q27 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: Megakaryocytopoiesis is the cellular development process that leads to platelet production. The protein encoded by this gene is a humoral growth factor that is necessary for megakaryocyte proliferation and maturation, as well as for thrombopoiesis. This protein is the ligand for MLP/C_MPL, the product of myeloproliferative leukemia virus oncogene. Alternatively spliced transcript variants encoding distinct isoforms have been reported.
General function Ligand
Comment
Cellular localization Secreted
Comment
Ovarian function Antral follicle growth, Steroid metabolism
Comment Thrombopoietin regulates proliferation, apoptosis, secretory activity and intracellular messengers in porcine ovarian follicular cells: involvement of protein kinase A Sirotkin AV, et al . Thrombopoietin (TPO) is known to be involved in megakariocytopoesis, but its role in the control of ovarian function is unknown. The aims of this study were to determine whether TPO can regulate the proliferation, apoptosis and secretory activity of ovarian cells, to identify possible intracellular mediators of TPO action, especially protein kinase A (PKA), and to define their interrelationships within ovarian cells. We investigated the effect of TPO treatment (0, 1, 10 or 100 ng/ml) on the following characteristics of cultured porcine ovarian follicles, determined using SDS-PAGE and Western blotting, immunocytochemistry, RIA and ELISA: the expression of intracellular peptides associated with proliferation (PCNA), apoptosis (Bax), tyrosine kinase (TK, phosphotyrosine), Cdc2/p34 kinase, PKA and the transcription factor CREB-1, and the secretion of progesterone, androstenedione, estradiol-17beta, oxytocin, inhibin A, inhibin B, IGF-I, transforming growth factor-2beta (TGF-2beta) and IGF-binding protein 3 (IGFBP-3). The involvement of PKA-dependent pathways was examined by evaluating the effect of a PKA blocker (KT5720, 1 mug/ml), either alone or in combination with TPO, on the parameters listed above. A TPO-induced increase in expression of PCNA, Bax, PKA, TK, Cdc2/p34 and CREB was observed. Furthermore, TPO was able to inhibit androstenedione, estradiol, TGF-2beta and IGFBP-3 secretion, and to stimulate oxytocin, inhibin A, inhibin B and IGF-I secretion. Progesterone secretion was not stimulated. The PKA blocker KT5720, when given alone, reduced the expression of Bax and TGF-2beta, augmented the expression of PKA, CREB and oxytocin, but did not influence the secretion of progesterone, androstenedione, estradiol, IGFBP-3, inhibins A and B or IGF-I. When given together with TPO, the PKA blocker prevented or reversed the action of TPO on PKA, CREB, androstenedione, estradiol, IGFBP-3, oxytocin, but not its effect on Bax, TGF-2beta or inhibin B. On the other hand, treatment with KT5720 augmented the effect of TPO on progesterone, inhibin A and IGF-I. These results provide the first evidence that TPO may be a potent regulator of ovarian function (e.g. proliferation, apoptosis and the secretion of peptide hormones, steroids, growth factors and growth factor-binding protein, as well as of the expression of some intracellular messengers). Furthermore, they demonstrated the importance of PKA in controlling these functions and in mediating the effects of TPO on ovarian cells. It remains possible that other (TK- and Cdc2/p34-dependent) intracellular mechanisms are also involved in mediating TPO action on the ovary.
Expression regulated by
Comment
Ovarian localization Granulosa, Theca, Luteal cells
Comment The Expression of Thrombopoietin and its Receptor During Different Physiological Stages in the Bovine Ovary. Sarkar M et al. Thrombopoietin (TPO) is known to be involved in megakaryocytopoiesis, but its role in the control of ovarian function is unknown in cattle. The aims of this study were to demonstrate the expression of TPO and its receptor (c-MPL) in detail in bovine corpus luteum (CL) obtained from different stages of the oestrous cycle and during pregnancy - and to demonstrate that TPO/c-MPL system is expressed clearly in bovine follicles. Real-time RT-PCR (qPCR) and ELISA were applied to investigate mRNA expression of examined factors and TPO protein, respectively. In this investigation, increases in the concentrations of TPO protein and the mRNA expression of TPO and c-MPL were noticed during both early luteal stage and late luteal stage of the oestrous cycle. Furthermore, the expression of TPO/c-MPL system does not show any significant regulation in the CL throughout pregnancy. Highest co-expression of TPO/c-MPL system in both theca interna (TI) and granulosa cells (GC) in small follicles (<10 mm in diameter) was observed in this study that may suggest the possible role of TPO/c-MPL system in proliferation of TI and GC cells. To conclude, the results demonstrate the possible involvement of locally produced TPO/c-MPL system as a 'physiological filter' in bovine ovary where they may promote cell selection by inducing proliferation of viable cells and scavenging non-viable cells and thereby may play an important role in modulation of ovarian function.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Dec. 15, 2004, 6:55 a.m. by: hsueh   email:
home page:
last update: Jan. 5, 2011, 10:28 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form