Comment |
Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development. De S et al. ABSTRACT: BACKGROUND: The 14-3-3 (YWHA) proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (beta, gamma, epsilon, zeta, eta, tau and sigma). These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. RESULTS: We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (beta, epsilon, gamma, and zeta) are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3eta is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. CONCLUSIONS: We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the differential expression of these 14-3-3 isoforms in female germ cells and ovarian follicles provides the foundation for further investigating 14-3-3 isoform-specific interactions with key proteins involved in ovarian development, meiosis and oocyte maturation. This will lead to a better understanding of the individual functional roles of the 14-3-3 protein isoforms in mammalian oogenesis and female reproductive development.
Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation Dalbies-Tran R, et al .
We have analyzed gene expression in bovine oocytes before and after in vitro maturation (IVM) using heterologous hybridization onto cDNA array. Total RNA was purified from pools of over 200 oocytes either immediately after aspiration from follicles at the surface of slaughterhouse cow ovaries or following in vitro maturation. Radiolabeled cDNA probes were generated by reverse-transcription followed by linear PCR amplification and were hybridized to Atlas human cDNA arrays. To our knowledge, this is the first report of gene expression profiling by this technology in the mammalian female germ cell. Our results demonstrate that cDNA array screening is a suitable method for analyzing the transcription pattern in oocytes. About 300 identified genes were reproducibly shown to be expressed in the bovine oocyte, the largest profile available so far in this model. The relative abundance of most messenger RNAs appeared stable during IVM. However, 70 transcripts underwent a significant differential regulation (by a factor of at least two). Their potential role in the context of oocyte maturation is discussed. Together they constitute a molecular signature of the degree of oocyte cytoplasmic maturation achieved in vitro.
|