Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Chromobox Homolog 5 OKDB#: 2951
 Symbols: CBX5 Species: human
 Synonyms: HP1, HP1-ALPHA, HP1Hs-alpha,HP1, DROSOPHILA, HOMOLOG OF, ALPHA|HP1-ALPHA|HETEROCHROMATIN PROTEIN 1, HP1  Locus: 12q13.13 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: Heterochromatin protein-1 (HP1) is a methyl-lysine binding protein localized at heterochromatin sites, where it mediates gene silencing.[supplied by OMIM]
General function Chromosome organization
Comment
Cellular localization Nuclear
Comment
Ovarian function Early embryo development
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Expression of Polycomb-group genes in human ovarian follicles, oocytes and preimplantation embryos Hinkins M, et al . Mammalian oocytes possess unique properties with respect to their ability to regulate and reprogram chromatin structure and epigenetic information. Proteins containing the conserved chromodomain motif that is common to the Polycomb-group (Pc-G) proteins and the heterochromatin-associated protein HP1, play essential roles in these processes and more specifically, in X-chromosome inactivation in female zygotes and extra-embryonic tissues and in the regulation of genomic imprinting. To characterize the potential role of these proteins in the regulation of epigenetic events during early human development, we utilized a degenerate PCR priming assay to assess the expression of mRNAs of chromodomain proteins in cDNA samples derived from the human female germline and preimplantation embryos. Expression of mRNAs of HP1 genes was observed in ovarian follicles, (HP1 (HSalpha), HP1 (HSbeta), HP1 (HSgamma)), mature oocytes (HP1 (HSalpha), HP1 (HSbeta)), cleavage stage preimplantation embryos (HP1 (HSalpha), HP1 (HSbeta), HP1 (HSgamma)) and blastocysts (HP1 (HSalpha), HP1 (HSgamma)). Transcripts for three Pc-G genes, which are essential for early mammalian development (Yin Yang 1 (YY1), Enhancer of Zeste-2 (EZH2) and Embryonic Ectoderm Development (EED)) and that are essential for the regulation of X-inactivation and certain imprinted genes (EED) were revealed by gene-specific-PCR expression analysis of human ovarian follicles, oocytes and preimplantation embryos. YY1 and EZH2 transcripts were additionally detected in metaphase II oocytes.
Follicle stages
Comment A gene expression signature shared by human mature oocytes and embryonic stem cells. Assou S et al. ABSTRACT: BACKGROUND: The first week of human pre-embryo development is characterized by the induction of totipotency and then pluripotency. The understanding of this delicate process will have far reaching implication for in vitro fertilization and regenerative medicine. Human mature MII oocytes and embryonic stem (ES) cells are both able to achieve the feat of cell reprogramming towards pluripotency, either by somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome of these two cell types may highlight genes that are involved in pluripotency initiation. Results: Based on a microarray compendium of 205 samples, we compared the gene expression profile of mature MII oocytes and human ES cells (hESC) to that of somatic tissues. We identified a common oocyte/hESC gene expression profile, which included a strong cell cycle signature, genes associated with pluripotency such as LIN28 and TDGF1, a large chromatin remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5), 18 different zinc finger transcription factors, including ZNF84, and several still poorly annotated genes such as KLHL7, MRS2, or the Selenophosphate synthetase 1 (SEPHS1). Interestingly, a large set of genes was also found to code for proteins involved in the ubiquitination and proteasome pathway. Upon hESC differentiation into embryoid bodies, the transcription of this pathway declined. In vitro, we observed a selective sensitivity of hESC to the inhibition of the activity of the proteasome. Conclusions: These results shed light on the gene networks that are concurrently overexpressed by the two human cell types with somatic cell reprogramming properties.
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Dec. 7, 2005, 10:16 a.m. by: hsueh   email:
home page:
last update: Jan. 14, 2009, 10:41 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form