Sgol2 provides a regulatory platform that coordinates essential cell cycle processes during meiosis I in oocytes. Rattani A et al. (2015) Accurate chromosome segregation depends on coordination between cohesion resolution and kinetochore-microtubule interactions (K-fibers), a process regulated by the spindle assembly checkpoint (SAC). How these diverse processes are coordinated remains unclear. We show that in mammalian oocytes Shugoshin-like protein 2 (Sgol2) in addition to protecting cohesin, plays an important role in turning off the SAC, in promoting the congression and bi-orientation of bivalents on meiosis I spindles, in facilitating formation of K-fibers and in limiting bivalent stretching. Sgol2's ability to protect cohesin depends on its interaction with PP2A, as is its ability to silence the SAC, with the latter being mediated by direct binding to Mad2. In contrast, its effect on bivalent stretching and K-fiber formation is independent of PP2A and mediated by recruitment of MCAK and inhibition of Aurora C kinase activity respectively. By virtue of its multiple interactions, Sgol2 links many of the processes essential for faithful chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.01133.001. //////////////////
General function
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Initiation of primordial follicle growth, Oocyte maturation
Comment
Mps1 kinase-dependent Sgo2 centromere localisation mediates cohesin protection in mouse oocyte meiosis I. El Yakoubi W et al. (2017) A key feature of meiosis is the step-wise removal of cohesin, the protein complex holding sister chromatids together, first from arms in meiosis I and then from the centromere region in meiosis II. Centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage, in order to maintain sister chromatids together until their separation in meiosis II. Failures in step-wise cohesin removal result in aneuploid gametes, preventing the generation of healthy embryos. Here, we report that kinase activities of Bub1 and Mps1 are required for Sgo2 localisation to the centromere region. Mps1 inhibitor-treated oocytes are defective in centromeric cohesin protection, whereas oocytes devoid of Bub1 kinase activity, which cannot phosphorylate H2A at T121, are not perturbed in cohesin protection as long as Mps1 is functional. Mps1 and Bub1 kinase activities localise Sgo2 in meiosis I preferentially to the centromere and pericentromere respectively, indicating that Sgo2 at the centromere is required for protection.In meiosis I centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage ensuring that sister chromatids are kept together until their separation in meiosis II. Here the authors demonstrate that Bub1 and Mps1 kinase activities are required for Sgo2 localisation to the centromere region.//////////////////
Premature dyad separation in meiosis II is the major segregation error with maternal age in mouse oocytes. Yun Y 2013 et al.
As women get older their oocytes become susceptible to chromosome mis-segregation. This generates aneuploid embryos, leading to increased infertility and birth defects. Here we examined the provenance of aneuploidy by tracking chromosomes and their kinetochores in oocytes from young and aged mice. Changes consistent with chromosome cohesion deterioration were found with age, including increased interkinetochore distance and loss of the centromeric protector of cohesion SGO2 in metaphase II arrested (metII) eggs, as well as a rise in the number of weakly attached bivalents in meiosis I (MI) and lagging chromosomes at anaphase I. However, there were no MI errors in congression or biorientation. Instead, premature separation of dyads in meiosis II was the major segregation defect in aged eggs and these were associated with very low levels of SGO2. These data show that although considerable cohesion loss occurs during MI, its consequences are observed during meiosis II, when centromeric cohesion is needed to maintain dyad integrity.
/////////////////////////
Age-related meiotic segregation errors in Mammalian oocytes are preceded by depletion of cohesin and sgo2. Lister LM et al. BACKGROUND: The growing trend for women to postpone childbearing has resulted in a dramatic increase in the incidence of trisomic pregnancies. Maternal age-related miscarriage and birth defects are predominantly a consequence of chromosome segregation errors during the first meiotic division (MI), which involves the segregation of replicated recombined homologous chromosomes. Despite the importance to human reproductive health, the events precipitating female age-related meiotic errors are poorly understood. RESULTS: Here we use a long-lived wild-type mouse strain to show that the ability to segregate chromosomes synchronously during anaphase of MI declines dramatically during female aging. This is preceded by depletion of chromosome-associated cohesin in association with destabilization of chiasmata, the physical linkages between homologous chromosomes, and loss of the tight association between sister centromeres. Loss of cohesin is not due to an age-related decline in the ability of the spindle checkpoint to delay separase-mediated cleavage of cohesin until entry into anaphase I. However, we find that reduced cohesin is accompanied by?depletion of Sgo2, which protects centromeric cohesin during MI. CONCLUSIONS: The data indicate that cohesin declines gradually during the long prophase arrest that precedes MI in female mammals. In aged oocytes, cohesin levels fall below the level required to stabilize chiasmata and to hold sister centromeres tightly together, leading to chromosome missegregation during MI. Cohesin loss may be amplified by a concomitant decline in the levels of the centromeric cohesin protector Sgo2. These findings indicate that cohesin is a key molecular link between female aging and chromosome missegregation during MI.
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Sgol2 provides a regulatory platform that coordinates essential cell cycle processes during meiosis I in oocytes. Rattani A 2013 et al.
Accurate chromosome segregation depends on coordination between cohesion resolution and kinetochore-microtubule interactions (K-fibers), a process regulated by the spindle assembly checkpoint (SAC). How these diverse processes are coordinated remains unclear. We show that in mammalian oocytes Shugoshin-like protein 2 (Sgol2) in addition to protecting cohesin, plays an important role in turning off the SAC, in promoting the congression and bi-orientation of bivalents on meiosis I spindles, in facilitating formation of K-fibers and in limiting bivalent stretching. Sgol2's ability to protect cohesin depends on its interaction with PP2A, as is its ability to silence the SAC, with the latter being mediated by direct binding to Mad2. In contrast, its effect on bivalent stretching and K-fiber formation is independent of PP2A and mediated by recruitment of MCAK and inhibition of Aurora C kinase activity respectively. By virtue of its multiple interactions, Sgol2 links many of the processes essential for faithful chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.01133.001.
/////////////////////////
Follicle stages
Antral, Preovulatory
Comment
Phenotypes
POF (premature ovarian failure)
Mutations
1 mutations
Species: human
Mutation name: type: naturally occurring fertility: subfertile Comment: Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome. Faridi R et al. (2017) Perrault syndrome (PS) is a genetically heterogeneous disorder characterized by primary ovarian insufficiency (POI) in females and sensorineural hearing loss in males and females. In many PS subjects, causative variants have not been found in the five reported PS genes. The objective of this study was to identify the genetic cause of PS in an extended consanguineous family with six deaf individuals. Whole exome sequencing (WES) was completed on four affected members of a large family, and variants and co-segregation was confirmed by Sanger sequencing. All hearing impaired individuals, including the proband, are homozygous for a pathogenic variant of CLDN14, but this only explains the deafness. The PS proband is also homozygous for a frameshift variant (c.1453_1454delGA, p.(Glu485Lysfs*5)) in exon 7 of SGO2 encoding shugoshin 2, which is the likely cause of her concurrent ovarian insufficiency. In mouse, Sgol2a encoding shugoshin-like 2a is necessary during meiosis in both sexes to maintain the integrity of the cohesin complex that tethers sister chromatids. Human SGO2 has not previously been implicated in any disorder, but in this case of POI and perhaps others, it is a candidate for unexplained infertility.//////////////////