Comment |
Romano RA, et al used a bioinformatics approach to identify Basonuclin2, the second member of the Basonuclin zinc-finger family of transcription factors. The mouse Basonuclin2 protein consists of 1049 amino acids and contains three pairs of zinc fingers in the C-terminus that show a high level of amino acid sequence similarity with Basonuclin1. In addition, other characteristic domains of Basonuclin1, such as the serine strip and a nuclear localization signal, are also present in Basonuclin2. We used genomic and in silico database analysis to identify the human and rat homologs of basonuclin2. A search of the mouse genome showed that the basonuclin2 gene maps to chromosome 4 and consists of six exons spanning approximately 300 kb. Northern blot analysis revealed multiple transcripts of basonuclin2 in tissues of the reproductive system (ovary and testis) and also in kidney and skin. We demonstrate that, as expected from sequence conservation, recombinant Basonuclin2 can bind to a sequence in the promoter of a rRNA gene previously characterized as a Basonuclin-binding site. Full-length Basonuclin2 exclusively localizes to the nucleus, indicating that it likely plays an important role in nuclear function, probably in gene regulation. Our study establishes Basonuclin2 as a novel member of the Basonuclin family. Moreover, the structural and functional similarities with Basonuclin1 suggest that Basonuclin2 may play an analogous function in germ cells and skin keratinocytes.
|
Mutations |
2 mutations
Species: None
Mutation name: None
type: null mutation
fertility: infertile - ovarian defect
Comment: Basonuclin-2 requirements for zebrafish adult pigment pattern development and female fertility. Lang MR et al. Relatively little is known about the generation of adult form. One complex adult trait that is particularly amenable to genetic and experimental analysis is the zebrafish pigment pattern, which undergoes extensive remodeling during post-embryonic development to form adult stripes. These stripes result from the arrangement of three classes of neural crest-derived pigment cells, or chromatophores: melanophores, xanthophores, and iridophores. Here, we analyze the zebrafish bonaparte mutant, which has a normal early pigment pattern but exhibits a severe disruption to the adult stripe pattern. We show that the bonaparte mutant phenotype arises from mutations in basonuclin-2 (bnc2), encoding a highly conserved, nuclear-localized zinc finger protein of unknown function. We show that bnc2 acts non-autonomously to the melanophore lineage and is expressed by hypodermal cells adjacent to chromatophores during adult pigment pattern formation. In bonaparte (bnc2) mutants, all three types of chromatophores differentiate but then are lost by extrusion through the skin. We further show that while bnc2 promotes the development of two genetically distinct populations of melanophores in the body stripes, chromatophores of the fins and scales remain unaffected in bonaparte mutants, though a requirement of fin chromatophores for bnc2 is revealed in the absence of kit and colony stimulating factor-1 receptor activity. Finally, we find that bonaparte (bnc2) mutants exhibit dysmorphic ovaries correlating with infertility and bnc2 is expressed in somatic ovarian cells, whereas the related gene, bnc1, is expressed within oocytes; and we find that both bnc2 and bnc1 are expressed abundantly within the central nervous system. These findings identify bnc2 as an important mediator of adult pigment pattern formation and identify bonaparte mutants as an animal model for dissecting bnc2 functions.
Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: The importance of basonuclin 2 in adult mice and its relation to basonuclin 1. Vanhoutteghem A et al. (2016) BNC2 is an extremely conserved zinc finger protein with important functions in the development of craniofacial bones and male germ cells. Because disruption of the Bnc2 gene in mice causes neonatal lethality, the function of the protein in adult animals has not been studied. Until now BNC2 was considered to have a wider tissue distribution than its paralog, BNC1, but the precise cell types expressing Bnc2 are largely unknown. We identify here the cell types containing BNC2 in the mouse and we show the unexpected presence of BNC1 in many BNC2-containing cells. BNC1 and BNC2 are colocalized in male and female germ cells, ovarian epithelial cells, sensory neurons, hair follicle keratinocytes and connective cells of organ capsules. In many cell lineages, the two basonuclins appear and disappear synchronously. Within the male germ cell lineage, BNC1 and BNC2 are found in prospermatogonia and undifferentiated spermatogonia, and disappear abruptly from differentiating spermatogonia. During oogenesis, the two basonuclins accumulate specifically in maturing oocytes. During the development of hair follicles, BNC1 and BNC2 concentrate in the primary hair germs. As follicle morphogenesis proceeds, cells possessing BNC1 and BNC2 invade the dermis and surround the papilla. During anagen, BNC1 and BNC2 are largely restricted to the basal layer of the outer root sheath and the matrix. During catagen, the compartment of cells possessing BNC1 and BNC2 regresses, and in telogen, the two basonuclins are confined to the secondary hair germ. During the next anagen, the BNC1/BNC2-containing cell population regenerates the hair follicle. By examining Bnc2(-/-) mice that have escaped the neonatal lethality usually associated with lack of BNC2, we demonstrate that BNC2 possesses important functions in many of the cell types where it resides. Hair follicles of postnatal Bnc2(-/-) mice do not fully develop during the first cycle and thereafter remain blocked in telogen. It is concluded that the presence of BNC2 in the secondary hair germ is required to regenerate the transient segment of the follicle. Postnatal Bnc2(-/-) mice also show severe dwarfism, defects in oogenesis and alterations of palatal rugae. Although the two basonuclins possess very similar zinc fingers and are largely coexpressed, BNC1 cannot substitute for BNC2. This is shown incontrovertibly in knockin mice expressing Bnc1 instead of Bnc2 as these mice invariably die at birth with craniofacial abnormalities undistinguishable from those of Bnc2(-/-) mice. The function of the basonuclins in the secondary hair germ is of particular interest.//////////////////
|