Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

prostaglandin I2 synthase OKDB#: 3112
 Symbols: PTGIS Species: human
 Synonyms: CYP8, PGIS, PTGI, CYP8A1  Locus: 20q13.13 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. However, this protein is considered a member of the cytochrome P450 superfamily on the basis of sequence similarity rather than functional similarity. This endoplasmic reticulum membrane protein catalyzes the conversion of prostglandin H2 to prostacyclin (prostaglandin I2), a potent vasodilator and inhibitor of platelet aggregation. An imbalance of prostacyclin and its physiological antagonist thromboxane A2 contribute to the development of myocardial infarction, stroke, and atherosclerosis. [provided by RefSeq, Jul 2008]
General function Intracellular signaling cascade, Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Luteinization, Oocyte maturation
Comment Prostacyclin synthesis and prostacyclin receptor expression in the porcine corpus luteum: evidence for a luteotropic role in vitro. Szymanska M et al. (2018) The prostacyclin (prostaglandin I2) signaling system is an essential regulator of vascular homeostasis. Since the corpus luteum is a highly vascularized gland, prostacyclin seems to be crucial for luteal development and function. Although progress has been made in understanding the luteotropic action of prostacyclin in mammals, its role in the porcine corpus luteum remains to be determined. Therefore, studies were conducted to (1) determine profiles of prostacyclin synthase expression and prostacyclin metabolite concentration, as well as prostacyclin G-protein-coupled receptor expression in porcine luteal tissue on days 2 to 16 of the estrous cycle and days 10 to 30 of pregnancy using real-time PCR, western blot, or enzyme immunoassay; and (2) examine the effect of prostacyclin on progesterone synthesis in vitro. To accomplish the second aim, luteal cells were treated with prostacyclin analogs, iloprost and carbaprostacyclin, in the presence or absence of prostacyclin receptor antagonists. The mRNA expression of cytochrome P450 family 11 subfamily A member 1 and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 was analyzed using real-time PCR, while progesterone concentration in culture medium was assessed by radioimmunoassay.Dynamic changes of prostacyclin synthase and prostacyclin receptor expression were observed in porcine luteal tissue during the estrous cycle and early pregnancy. Moreover, prostacyclin stimulated progesterone production and this effect was abolished by the addition of prostacyclin receptor antagonists. Our findings provide strong evidence that prostacyclin and its signaling system are present in corpus luteum of the pig and may directly promote luteotropic activity through upregulation of progesterone synthesis.////////////////// Iloprost, a prostacyclin analogue, stimulates meiotic maturation and early embryonic development in pigs. Kim JS et al. Oviduct fluid contains various cytokines and growth factors that enhance the embryo development during the preimplantation period. In hatched embryos, prostacyclin (PGI(2)) improves implantation, but its role during oocyte maturation and early embryo development remains contentious. Therefore, in the present study, we examined the effects of a PGI(2) analogue (iloprost) on meiotic maturation and early embryonic development in pigs, as well on the structural integrity, mitochondrial membrane potential and apoptosis in blastocysts. First, meiotic maturation in pig oocytes was examined in the presence of increasing concentrations of iloprost (1, 5 and 10 muM). After IVM, a higher proportion of iloprost-treated compared with untreated oocytes was in MII (90.0% v. 65.7%, respectively; P < 0.05). In addition, protein kinase A activity increased in iloprost-treated oocytes, indicating increased intracellular cAMP concentrations. After 22 h iloprost treatment (44 h total incubation time), western blotting demonstrated increased expression of extracellular signal-regulated kinase (ERK) 1/2, phosphorylated (p-) ERK1/2, cAMP response element-binding protein (CREB), p-CREB and cyclo-oxygenase-2, indicating activation of the mitogen-activated protein kinase and PGI(2) pathways. In addition, the frequency of polyspermy decreased in iloprost-treated oocytes (19.9%) compared with control (35.8%), whereas the rate of blastocyst formation increased (P < 0.05). Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) showed that the number of nuclei containing fragmented DNA at the blastocyst stage decreased in the iloprost-treated group compared with control (1.2% v. 3.6%, respectively). In conclusion, iloprost appears to play a direct role in porcine oocyte maturation by enhancing blastocyst structure and survival.
Expression regulated by
Comment
Ovarian localization Cumulus, Luteal cells
Comment The human cumulus-oocyte complex gene-expression profile. Assou S et al. BACKGROUND: The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes and cumulus cells.
Follicle stages Corpus luteum
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: June 20, 2006, 11:33 a.m. by: Alex   email:
home page:
last update: Dec. 5, 2018, 10:27 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form