NCBI Summary:
This gene encodes a member of the transducer of erbB-2 /B-cell translocation gene protein family. Members of this family are anti-proliferative factors that have the potential to regulate cell growth. The encoded protein may function as a tumor suppressor. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Aug 2011]
General function
Nucleic acid binding, DNA binding, Transcription factor
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Oogenesis, Oocyte maturation
Comment
Tob genes in development and homeostasis. Jia S et al. Members of the Btg/Tob protein family share a conserved N-terminal region that confers the activity to inhibit cell proliferation. Tob1 and Tob2 proteins, which constitute a Tob subfamily, have a longer C-terminal region than BTG proteins. Apparently, genomes of invertebrates and teleost species contain only a single Tob locus, whereas genomes of mammalian, avian, and amphibian species contain two Tob loci (Tob1 and Tob2). Tob genes are expressed in oocytes, sperm, early embryos, and various adult tissues, depending on the species. Recent reports indicate that Tob proteins play important roles in spermatogenesis, embryonic dorsoventral patterning, osteogenesis, T-cell activation, and learning and memory. Accumulating evidence supports the hypothesis that Tob proteins act primarily as transcriptional repressors in several signaling pathways. Developmental Dynamics, 2007. (c) 2007 Wiley-Liss, Inc.
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2. Shapouri F et al. (2015) Tob1 is a member of the BTG/TOB family of proteins with established antiproliferative function. In Danio rerio and Xenopus laevis, the Tob1 gene is expressed from the one-cell stage through to early gastrula stages, followed in later development by discrete expression in many tissues including the notochord and somites. In both mouse and human, Tob1 is expressed in many adult tissues including the testis and ovary; however, the specific cell types are unknown. We examine Tob1 gene expression in mouse in developing germ cells and in sorted male germ cells (gonocytes, spermatogonia, pachytene spermatocytes and round spermatids) by reverse transcription and droplet digital polymerase chain reaction (RT-ddPCR) and in adult ovary and testis by immunofluorescence with anti-Tob1 protein staining. By RT-ddPCR, Tob1 expression was low in developing male germ cells but was highly expressed in round spermatids. In developing female germ cells undergoing entry into meiosis, it increased 10-fold. Tob1 was also highly expressed in round spermatids and in oocytes in all stages of folliculogenesis. Notably, a marker for P-bodies, Dcp-2, was also highly expressed in round spermatids and all oocyte stages examined. The cytoplasmic presence of Tob1 protein in round spermatids and oocytes and the association of Tob1 protein with Dcp2 in both cell types suggest that Tob1 protein plays a role in post-transcriptional mechanisms.//////////////////