NCBI Summary:
This gene encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 non-identical kinase catalytic domains and phosphorylates various substrates, including members of the mitogen-activated kinase (MAPK) signalling pathway. The activity of this protein has been implicated in controlling cell growth and differentiation. Alternate transcriptional splice variants, encoding different isoforms, have been characterized.
Genes whose expression is detected by cDNA array hybridization: transporters, signal transduction Rozenn Dalbi?Tran and Pascal Mermilloda
Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. Pelech S et al. Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation.
Expression regulated by
Comment
Ovarian localization
Cumulus, Surface epithelium
Comment
Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Adriaenssens T et al. BACKGROUND Gene expression of cumulus cells (CC) could predict oocyte developmental quality. Knowledge of the genes involved in determining oocyte quality is scanty. The aim was to correlate clinical and biological characteristics during ovarian stimulation with the expression of 10 selected genes in CC. METHODS Sixty-three ICSI patients were stimulated with GnRH-agonist plus highly purified hMG (n = 35) or recombinant FSH (n = 28). Thirteen variables were analyzed: Age, BMI, duration of stimulation, serum concentrations of progesterone, 17beta-estradiol, FSH and LH on day of hCG, Ovarian Response, Oocyte Maturity, 2 pronuclei and three embryo morphology related variables: >/=7 cells, Low Fragmentation, Good Quality Embryos score. Expression of HAS2, VCAN, SDC4, ALCAM, GREM1, PTGS1, PTGS2, DUSP16, SPROUTY4 and RPS6KA2 was analyzed in pooled CC using quantitative PCR, and the relationship to the 13 variables was evaluated by multivariable analysis. RESULTS All 10 genes are expressed at oocyte retrieval, with PTGS1, SPROUTY4, DUSP16 and RPS6KA2 described in human ovary for the first time. The three variables that correlated most often with differential expression were Age, BMI and serum FSH level. Significant correlation was found with Oocyte Maturity (VCAN, P < 0.005), Low Fragmentation (RPS6KA2, P < 0.05), Embryos with >/=7 cells (ALCAM and GREM1, P < 0.05). The expression of the other genes was also correlated to oocyte developmental quality but to a less extent. SDC4, VCAN, GREM1, SPROUTY4 and RPS6KA2 showed gonadotrophin preparation-dependent expression and/or interactions (all P < 0.05). CONCLUSION The expression of ovulation related genes in CC is associated with patient and treatment characteristics, oocyte developmental potential and differs with the type of gonadotrophin used.
RPS6KA2, a putative tumour suppressor gene a
t 6q27 in sporadic epithelial ovarian cancer. Bignone PA et al. We had previously defined by allele loss studies a minimal region at 6q27 (between D6S264 and D6S297) to contain a putative tumour suppressor gene. The p90 ribosomal S6 kinase-3 gene (p90 Rsk-3, RPS6KA2) maps in this interval. It is a serine-threonine kinase that signals downstream of the mitogen-activated protein kinase pathway. It is expressed in normal ovarian epithelium, whereas reduced or absent in tumours or cell lines. We show that RPS6KA2 is monoallelically expressed in the ovary suggesting that loss of a single expressed allele is sufficient to cause complete loss of expression in cancer cells. Further, we have identified two new isoforms of RPS6KA2 with an alternative start codon. Homozygous deletions were identified within the RPS6KA2 gene in two cell lines. Re-expression of RPS6KA2 in ovarian cancer cell lines suppressed colony formation. In UCI101 cells, the expression of RPS6KA2 reduced proliferation, caused G1 arrest, increased apoptosis, reduced levels of phosphorylated extracellular signal-regulated kinase and altered other cell cycle proteins. In contrast, small interfering RNA against RPS6KA2 showed the opposite effect in 41M cells. The above results suggest that RPS6KA2 is a putative tumour suppressor gene to explain allele loss at 6q27.Oncogene advance online publication, 31 July 2006; doi:10.1038/sj.onc.1209827.