NCBI Summary:
This protein is a ubiquitously expressed nuclear protein and belongs to a highly conserved subfamily of WD-repeat proteins. It is found among several proteins that binds directly to retinoblastoma protein, which regulates cell proliferation. The encoded protein is found in many histone deacetylase complexes, including mSin3 co-repressor complex. It is also present in protein complexes involved in chromatin assembly. This protein can interact with BRCA1 tumor-suppressor gene and may have a role in the regulation of cell proliferation and differentiation. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2010]
General function
Nucleic acid binding, DNA binding, Transcription factor
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Oogenesis, Oocyte maturation
Comment
Knockdown of RBBP7 unveils a requirement of histone deacetylation for CPC function in mouse oocytes. Balboula AZ 2013 et al.
During mouse oocyte maturation histones are deacetylated, and inhibiting this deacetylation leads to abnormal chromosome segregation and aneuploidy. RBBP7 is a component of several different complexes that contain histone deacetylases, and therefore could be implicated in histone deacetylation. We find that Rbbp7 is a dormant maternal mRNA that is recruited for translation during oocyte maturation to regulate the histone deacetylation. Importantly, we show that the maturation-associated decrease of histone acetylation is required for localization and function of the chromosomal passenger complex (CPC) during oocyte meiotic maturation. This finding can explain the phenotypes of oocytes where Rbbp7 is depleted by a siRNA/morpholino cocktail including severe chromosome misalignment, improper kinetochore?microtubule attachments, impaired SAC function, cytokinesis defects, and increased incidence of aneuploidy at metaphase II (Met II). These results implicate RBBP7 as a novel regulator of histone deacetylation during oocyte maturation and provide evidence that such deacetylation is required for proper chromosome segregation by regulating localized CPC function.
/////////////////////////
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Identifying new human oocyte marker genes: a microarray approach. Gasca S et al. The efficacy of classical IVF techniques is still impaired by poor implantation and pregnancy rates after embryo transfer. This is mainly due to a lack of reliable criteria for the selection of embryos with sufficient development potential. Several studies have provided evidence that some gene expression levels could be used as objective markers of oocyte and embryo competence and capacity to sustain a successful pregnancy. These analyses usually use reverse transcription-polymerase chain reaction to look at small sets of pre-selected genes. However, microarray approaches allow the identification of a wider range of cellular marker genes which could include additional and perhaps more suitable genes that could serve as embryo selection markers. Microarray screenings of around 30,000 genes on U133P Affymetrix(trade mark)gene chips made it possible to establish the expression profile of these genes as well as other related genes in human oocytes and cumulus cells. This study identifies new potential regulators and marker genes such as BARD1, RBL2, RBBP7, BUB3 or BUB1B, which are involved in oocyte maturation.