NCBI Summary:
The globular WW domain, named for the conserved tryptophan residues in the protein motif present in various structural and regulatory proteins, is known to play a role in the mediation of protein-protein interactions. This gene encodes a ligand of the WW domain of the Yes kinase-associated protein. Readthrough transcription of the neighboring upstream gene, which encodes INO80 complex subunit B, into this gene generates a non-coding transcript. [provided by RefSeq, Feb 2011]
General function
Comment
Cellular localization
Comment
Ovarian function
Luteinization, Early embryo development
Comment
Characteristics of candidate genes associated with embryonic development in the cow: Evidence for a role for WBP1 in development to the blastocyst stage. Ortega MS et al. (2017) The goal was to gain understanding of how 12 genes containing SNP previously related to embryo competence to become a blastocyst (BRINP3, C1QB, HSPA1L, IRF9, MON1B, PARM1, PCCB, PMM2, SLC18A2, TBC1D24, TTLL3 and WBP1) participate in embryonic development. Gene expression was evaluated in matured oocytes and embryos. BRINP3 and C1QB were not detected at any stage. For most other genes, transcript abundance declined as the embryo developed to the blastocyst stage. Exceptions were for PARM1 and WBP1, where steady-state mRNA increased at the 9-16 cell stage. The SNP in WBP1 caused large differences in the predicted three-dimensional structure of the protein while the SNP in PARM1 caused smaller changes. The mutation in WBP1 causes an amino acid substitution located close to a P-P-X-Y motif involved in protein-protein interactions. Moreover, the observation that the reference allele varies between mammalian species indicates that the locus has not been conserved during mammalian evolution. Knockdown of mRNA for WBP1 decreased the percent of putative zygotes becoming blastocysts and reduced the number of trophectoderm cells and immunoreactive CDX2 in the resulting blastocysts. WBP1 is an important gene for embryonic development in the cow. Further research to identify how the SNP in WBP1 affects processes leading to differentiation of the embryo into TE and ICM lineages is warranted.//////////////////
Expression regulated by
LH
Comment
Gene expression decreased. Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression. Agca C et al. The LH surge initiates the luteinization of preovulatory follicles and causes hormonal and structural changes that ultimately lead to ovulation and the formation of corpora lutea. The objective of the study was to examine gene expression in ovarian follicles (n = 11) collected from pigs (Sus scrofa domestica) approaching estrus (estrogenic preovulatory follicle; n = 6 follicles from two sows) and in ovarian follicles collected from pigs on the second day of estrus (preovulatory follicles that were luteinized but had not ovulated; n = 5 follicles from two sows). The follicular status within each follicle was confirmed by follicular fluid analyses of estradiol and progesterone ratios. Microarrays were made from expressed sequence tags that were isolated from cDNA libraries of porcine ovary. Gene expression was measured by hybridization of fluorescently labeled cDNA (preovulatory estrogenic or -luteinized) to the microarray. Microarray analyses detected 107 and 43 genes whose expression was decreased or increased (respectively) during the transition from preovulatory estrogenic to -luteinized (P<0.01). Cells within preovulatory estrogenic follicles had a gene-expression profile of proliferative and metabolically active cells that were responding to oxidative stress. Cells within preovulatory luteinized follicles had a gene-expression profile of nonproliferative and migratory cells with angiogenic properties. Approximately, 40% of the discovered genes had unknown function.