Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

hyaluronidase 1 OKDB#: 3461
 Symbols: HYAL1 Species: human
 Synonyms: MPS9, NAT6, LUCA1, HYAL-1  Locus: 3p21.31 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment senescence

NCBI Summary: This gene encodes a lysosomal hyaluronidase. Hyaluronidases intracellularly degrade hyaluronan, one of the major glycosaminoglycans of the extracellular matrix. Hyaluronan is thought to be involved in cell proliferation, migration and differentiation. This enzyme is active at an acidic pH and is the major hyaluronidase in plasma. Mutations in this gene are associated with mucopolysaccharidosis type IX, or hyaluronidase deficiency. The gene is one of several related genes in a region of chromosome 3p21.3 associated with tumor suppression. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
General function Enzyme, Hydrolase
Comment
Cellular localization
Comment
Ovarian function Follicle atresia
Comment Mammalian Hyaluronidase Induces Ovarian Granulosa Cell Apoptosis and Is Involved in Follicular Atresia. Orimoto AM et al. During ovarian folliculogenesis, the vast majority of follicles will undergo atresia by apoptosis, allowing a few dominant follicles to mature. Mammalian hyaluronidases comprise a family of 6-7 enzymes sharing the same catalytic domain responsible for hyaluronan hydrolysis. Interestingly, some of these enzymes have been shown to induce apoptosis. In the ovary, expression of three hyaluronidases (Hyal-1, Hyal-2 and Hyal-3) has been documented. However, their precise cellular localization and role in ovarian regulation have not yet been defined. We herein investigated the possible involvement of these enzymes in ovarian atresia. Firstly, we established a mouse model for ovarian atresia (gonadotropin withdrawal by anti-eCG treatment) and showed that the mRNA levels of Hyal-1, Hyal-2 and Hyal-3 were significantly increased in apoptotic granulosa cells as well as in atretic follicles. Secondly, using ovaries of normally cycling mice, we demonstrated the correlation of Hyal-1 mRNA and protein expression with cleavage of caspase-3. In addition, we showed that expression of all three hyaluronidases induced apoptosis in transfected granulosa cells. Significantly, the induction of apoptosis by hyaluronidases was independent of catalytic activity, since enzymatically inactive Hyal-1 mutant (D157A/E159A) was as efficient as the wild type enzyme in apoptosis induction. The activation of the extrinsic apoptotic signaling pathway was involved in this induction, as increased levels of cleaved caspase-8, caspase-3 and poly-ADP-ribose polymerase (PARP) were observed upon hyaluronidase ectopic expression. Our present findings provide a better understanding of the role of hyaluronidases in ovarian functions, showing for the first time their involvement in follicular atresia.
Expression regulated by LH
Comment
Ovarian localization Granulosa
Comment Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Amargant F et al. (2020) Fibrosis is a hallmark of aging tissues which often leads to altered architecture and function. The ovary is the first organ to show overt signs of aging, including increased fibrosis in the ovarian stroma. How this fibrosis affects ovarian biomechanics and the underlying mechanisms are unknown. Using instrumental indentation, we demonstrated a quantitative increase in ovarian stiffness, as evidenced by an increase in Young's modulus, when comparing ovaries from reproductively young (6-12 weeks) and old (14-17 months) mice. This ovarian stiffness was dependent on collagen because ex vivo enzyme-mediated collagen depletion in ovaries from reproductively old mice restored their collagen content and biomechanical properties to those of young controls. In addition to collagen, we also investigated the role of hyaluronan (HA) in regulating ovarian stiffness. HA is an extracellular matrix glycosaminoglycan that maintains tissue homeostasis, and its loss can change the biomechanical properties of tissues. The total HA content in the ovarian stroma decreased with age, and this was associated with increased hyaluronidase (Hyal1) and decreased hyaluronan synthase (Has3) expression. These gene expression differences were not accompanied by changes in ovarian HA molecular mass distribution. Furthermore, ovaries from mice deficient in HAS3 were stiffer compared to age-matched WT mice. Our results demonstrate that the ovary becomes stiffer with age and that both collagen and HA matrices are contributing mechanisms regulating ovarian biomechanics. Importantly, the age-associated increase in collagen and decrease in HA are conserved in the human ovary and may impact follicle development and oocyte quality.////////////////// Changes in mouse granulosa cell gene expression during early luteinization. McRae RS et al. Changes in gene expression during granulosa cell luteinization have been measured using serial analysis of gene expression (SAGE). Immature normal mice were treated with pregnant mare serum gonadotropin (PMSG) or PMSG followed, 48 h later, by human chorionic gonadotropin (hCG). Granulosa cells were collected from preovulatory follicles after PMSG injection or PMSG/hCG injection and SAGE libraries generated from the isolated mRNA. The combined libraries contained 105,224 tags representing 40,248 unique transcripts. Overall, 715 transcripts showed a significant difference in abundance between the two libraries of which 216 were significantly down-regulated by hCG and 499 were significantly up-regulated. Among transcripts differentially regulated, there were clear and expected changes in genes involved in steroidogenesis as well as clusters of genes involved in modeling of the extracellular matrix, regulation of the cytoskeleton and intra and intercellular signaling. The SAGE libraries described here provide a base for functional investigation of the regulation of granulosa cell luteinization.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name: None
type: null mutation
fertility: fertile
Comment: Hyal-1 but not Hyal-3 deficiency has an impact on ovarian folliculogenesis and female fertility by altering the follistatin/activin/smad3 pathway and the apoptotic process. Dumaresq-Doiron K et al. Ovarian follicle development is a process regulated by various endocrine, paracrine and autocrine factors that act coordinately to promote follicle growth. However, the vast majority of follicles does not reach the pre-ovulatory stage but instead, undergo atresia by apoptosis. We have recently described a role for the somatic hyaluronidases (Hyal-1, Hyal-2 and Hyal-3) in ovarian follicular atresia and induction of granulosa cell apoptosis. Herein, we show that Hyal-1 but not Hyal-3 null mice have decreased apoptotic granulosa cells after the induction of atresia and an increased number of retrieved oocytes after stimulation of ovulation. Furthermore, young Hyal-1 null mice had a significantly higher number of primordial follicles than age matched wild-type animals. Recruitment of these follicles at puberty resulted in an increased number of primary and healthy preantral follicles in Hyal-1 null mice. Consequently, older Hyal-1 deficient female mice have prolonged fertility. At the molecular level, immature Hyal-1 null mice have decreased mRNA expression of follistatin and higher levels of phospho-Smad3 protein, resulting in increased levels of phospho-Akt in pubertal mice. Hyal-1 null ovarian follicles did not exhibit hyaluronan accumulation. For Hyal-3 null mice, compensation by Hyal-1 or Hyal-2 might be related to the lack of an ovarian phenotype. In conclusion, our results demonstrate that Hyal-1 plays a key role in the early phases of folliculogenesis by negatively regulating ovarian follicle growth and survival. Our findings add Hyal-1 as an ovarian regulator factor for follicle development, showing for the first time an interrelationship between this enzyme and the follistatin/activin/Smad3 pathway. J. Cell. Physiol. ? 2011 Wiley-Liss, Inc.

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: July 27, 2006, 11:52 a.m. by: Alex   email:
home page:
last update: Oct. 29, 2020, 6:49 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form