Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

angiotensin converting enzyme 2 OKDB#: 3517
 Symbols: ACE2 Species: human
 Synonyms: ACEH  Locus: Xp22.2 in Homo sapiens
HPMR


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene belongs to the angiotensin-converting enzyme family of dipeptidyl carboxydipeptidases and has considerable homology to human angiotensin 1 converting enzyme. This secreted protein catalyzes the cleavage of angiotensin I into angiotensin 1-9, and angiotensin II into the vasodilator angiotensin 1-7. ACE2 is known to be expressed in various human organs, and its organ- and cell-specific expression suggests that it may play a role in the regulation of cardiovascular and renal function, as well as fertility. In addition, the encoded protein is a functional receptor for the spike glycoprotein of the human coronavirus HCoV-NL63 and the human severe acute respiratory syndrome coronaviruses, SARS-CoV and SARS-CoV-2, the latter is the causative agent of coronavirus disease-2019 (COVID-19). Multiple splice variants have been found for this gene and the dACE2 (or MIRb-ACE2) splice variant has been found to be interferon inducible. [provided by RefSeq, Nov 2020]
General function Receptor, Enzyme
Comment
Cellular localization Secreted, Plasma membrane
Comment
Ovarian function Ovulation
Comment Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays. Bobe J et al. ABSTRACT: BACKGROUND: The hormonal control of oocyte maturation and ovulation as well as the molecular mechanisms of nuclear maturation have been thoroughly studied in fish. In contrast, the other molecular events occurring in the ovary during post-vitellogenesis have received far less attention. METHODS: Nylon microarrays displaying 9152 rainbow trout cDNAs were hybridized using RNA samples originating from ovarian tissue collected during late vitellogenesis, post-vitellogenesis and oocyte maturation. Differentially expressed genes were identified using a statistical analysis. A supervised clustering analysis was performed using only differentially expressed genes in order to identify gene clusters exhibiting similar expression profiles. In addition, specific genes were selected and their preovulatory ovarian expression was analyzed using real-time PCR. RESULTS: From the statistical analysis, 310 differentially expressed genes were identified. Among those genes, 90 were up-regulated at the time of oocyte maturation while 220 exhibited an opposite pattern. After clustering analysis, 90 clones belonging to 3 genes clusters exhibiting the most remarkable expression patterns were kept for further analysis. Using real-time PCR analysis, we observed a strong up-regulation of ion and water transport genes such as aquaporin 4 (aqp4) and pendrin (slc26). In addition, a dramatic up-regulation of vasotocin (avt) gene was observed. Furthermore, angiotensin-converting-enzyme 2 (ace2), coagulation factor V (cf5), adam 22, and the chemokine cxcl14 genes exhibited a sharp up-regulation at the time of oocyte maturation. Finally, ovarian aromatase (cyp19a1) exhibited a dramatic down-regulation over the post-vitellogenic period while a down-regulation of Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (cmah) was observed at the time of oocyte maturation. CONCLUSION: We showed the over or under expression of more that 300 genes, most of them being previously unstudied or unknown in the fish preovulatory ovary. Our data confirmed the down-regulation of estrogen synthesis genes during the preovulatory period. In addition, the strong up-regulation of aqp4 and slc26 genes prior to ovulation suggests their participation in the oocyte hydration process occurring at that time. Furthermore, among the most up-regulated clones, several genes such as cxcl14, ace2, adam22, cf5 have pro-inflammatory, vasodilatory, proteolytics and coagulatory functions. The identity and expression patterns of those genes support the theory comparing ovulation to an inflammatory-like reaction.
Expression regulated by FSH
Comment
Ovarian localization Oocyte, Cumulus, Granulosa
Comment Co-expression of the SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in human ovaries: Identification of cell types and trends with age. Wu M et al. (2021) The high rate of SARS-CoV-2 infection poses a serious threat to public health. Previous studies have suggested that SARS-CoV-2 can infect human ovary, the core organ of the female reproductive system. However, it remains unclear which type of ovarian cells are easily infected by SARS-CoV-2 and whether ovarian infectivity differs from puberty to menopause. In this study, public datasets containing bulk and single-cell RNA-Seq data derived from ovarian tissues were analyzed to demonstrate the mRNA expression and protein distribution of the two key entry receptors for SARS-CoV-2-angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2). Furthermore, an immunohistochemical study of ACE2 and TMPRSS2 in human ovaries of different ages was conducted. Differentially expressed gene (DEG) analysis of ovaries of different ages and with varying ovarian reserves was conducted to explore the potential functions of ACE2 and TMPRSS2 in the ovary. The analysis of the public datasets indicated that the co-expression of ACE2 and TMPRSS2 was observed mostly in oocytes and partially in granulosa cells. However, no marked difference was observed in ACE2 or TMPRSS2 expression between young and old ovaries and ovaries with low and high reserves. Correspondingly, ACE2 and TMPRSS2 were detected in the human ovarian cortex and medulla, especially in oocytes of different stages, with no observed variations in their expression level in ovaries of different ages, which was consistent with the results of bioinformatic analyses. Remarkably, DEG analysis showed that a series of viral infection-related pathways were more enriched in ACE2-positive ovarian cells than in ACE2-negative ovarian cells, suggesting that SARS-CoV-2 may potentially target specific ovarian cells and affect ovarian function. However, further fundamental and clinical research is still needed to monitor the process of SARS-CoV-2 entry into ovarian cells and the long-term effects of SARS-CoV-2 infection on the ovarian function in recovered females.////////////////// Human eggs, zygotes, and embryos express the receptor ACE2 and protease TMPRSS2 protein necessary for SARS-CoV-2 infection. Rajput SK et al. (2021) To study mRNA and protein expression of SARS-CoV-2 entry receptors (ACE2, CD147) and proteases (TMPRSS2, CTSL) in human oocytes, embryos, cumulus and granulosa cells. Research Study. Clinical IVF treatment center. IVF patients treated at the Colorado Center for Reproductive Medicine. Oocytes (GV, MII) and embryos (1 cell (1C); blastocyst (BL)) were donated to research at disposition by IVF patients. Follicular cells (cumulus (CC); granulosa (GC)) were collected from women undergoing egg retrieval after ovarian stimulation without an ovulatory trigger for IVM/IVF treatment cycles. The presence or absence of ACE2, CD147, TMPRSS2, and CTSL mRNA using RT-qPCR and protein using capillary Western blotting in human oocytes, embryos and ovarian follicular cells. RT- q-PCR analysis revealed high abundance of ACE2 gene transcripts in GV and MII oocytes compared to CC, GC, and BL. ACE2 protein was only present in MII oocytes, 1C, and BL embryos, but other ACE2 protein variants were observed in all the samples. TMPRSS2 protein was present in all samples while mRNA was observed only at the blastocyst stage. All the samples were positive for CD147 and CTSL mRNA expression. However, cumulus and granulosa cells were the only samples that showed co-expression of both CD147 and CTSL proteins in low abundance. Cumulus and granulosa cells are least susceptible to SARS-CoV-2 infection due to the lack of required receptors and proteases combination (ACE2/TMPRSS2 or CD147/CTSL) in high abundance. Co-expression of the ACE2 and TMPRSS2 proteins in MII oocytes, zygotes, and blastocysts demonstrate that these gametes and embryos have the cellular machinery required and thus are potentially susceptible to SARS-CoV-2 infection if exposed to the virus. However, we do not yet know if infection occurs in vivo, or in vitro in an ART setting.//////////////////SARS-CoV-2 host receptors ACE2 and CD147 (BSG) are present on human oocytes and blastocysts. Essahib W et al. (2020) To visualize SARS-CoV-2 host receptors ACE2 and CD147 on human oocytes and blastocysts. Immunohistochemistry and confocal microscopy on human primary oocytes and pre (5 days post fertilization (dpf5) and (dpf6))- and peri (dpf7)-implantation blastocysts donated to research. SARS-CoV-2 host receptors ACE2 and CD147 are present on the membrane of trophectoderm, epiblast and hypoblast cells in human blastocysts. CD147 is also present on the oolemma. Theoretically, the earliest stages of embryonic development may be vulnerable for SARS-CoV-2 infection.////////////////// Potential influence of COVID-19/ACE2 on the female reproductive system. Jing Y et al. (2020) The 2019 novel coronavirus (2019-nCoV) appeared in December 2019 and then spread throughout the world rapidly. The virus invades the target cell by binding to angiotensin-converting enzyme (ACE) 2 and modulates the expression of ACE2 in host cells. ACE2, a pivotal component of the renin-angiotensin system, exerts its physiological functions by modulating the levels of angiotensin II (Ang II) and Ang-(1-7). We reviewed the literature that reported the distribution and function of ACE2 in the female reproductive system, hoping to clarify the potential harm of 2019-nCoV to female fertility. The available evidence suggests that ACE2 is widely expressed in the ovary, uterus, vagina and placenta. Therefore, we believe that apart from droplets and contact transmission, the possibility of mother-to-child and sexual transmission also exists. Ang II, ACE2 and Ang-(1-7) regulate follicle development and ovulation, modulate luteal angiogenesis and degeneration, and also influence the regular changes in endometrial tissue and embryo development. Taking these functions into account, 2019-nCoV may disturb the female reproductive functions through regulating ACE2.//////////////////Gonadotropin Stimulation Increases the Expression of Angiotensin-(1-7) and Mas Receptor in the Rat Ovary. Pereira VM et al. We have previously shown the presence of immunoreactive angiotensin-(1-7) [Ang-(1-7)] in rat ovary homogenate and its stimulatory effect on estradiol and progesterone production in vitro. In the current study, we investigated the presence and cellular distribution of Ang-(1-7) and the Mas receptor, the expression of Mas and angiotensin-converting enzyme 2 (ACE2) messenger RNA (mRNA), and the enzymatic activity in the rat ovary following gonadotropin stimulation in vivo. Immature female Wistar rats (25 days old) were injected subcutaneously (SC) with equine chorionic gonadotropin (eCG, 20 IU in 0.2 mL) or vehicle 48 hours before euthanasia. Tissue distributions of Ang-(1-7), Mas receptor, and ACE2 were evaluated by immunohistochemistry, along with angiotensin II (Ang II) localization, while the mRNA expression levels of Mas receptor and ACE2 were evaluated by real-time polymerase chain reaction (PCR). In addition, we determined the activity of neutral endopeptidase (NEP), prolyl endopeptidase (PEP), and ACE by fluorometric assays. After eCG treatment, we found strong immunoreactivity for Ang-(1-7) and Mas primarily in the theca-interstitial cells, while Ang II appeared in the granulosa but not in the thecal layer. Equine chorionic gonadotropin treatment increased Mas and ACE2 mRNA expression compared with control animals (3.3- and 2.1-fold increase, respectively; P < .05). Angiotensin-converting enzyme and NEP activities were lower, while PEP activity was higher in the eCG-treated rats (P < .05). These data show gonadotropin-induced changes in the ovarian expression of Ang-(1-7), Mas receptor, and ACE2. These findings suggest that the renin-angiotensin system (RAS) branch formed by ACE2/Ang-(1-7)/Mas, fully expressed in the rat ovary and regulated by gonadotropic hormones, could play a role in the ovarian physiology.
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: fertile
Comment: Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. Gurley SB et al. (2006) The carboxypeptidase ACE2 is a homologue of angiotensin-converting enzyme (ACE). To clarify the physiological roles of ACE2, we generated mice with targeted disruption of the Ace2 gene. ACE2-deficient mice were viable, fertile, and lacked any gross structural abnormalities. We found normal cardiac dimensions and function in ACE2-deficient animals with mixed or inbred genetic backgrounds. On the C57BL/6 background, ACE2 deficiency was associated with a modest increase in blood pressure, whereas the absence of ACE2 had no effect on baseline blood pressures in 129/SvEv mice. After acute Ang II infusion, plasma concentrations of Ang II increased almost 3-fold higher in ACE2-deficient mice than in controls. In a model of Ang II-dependent hypertension, blood pressures were substantially higher in the ACE2-deficient mice than in WT. Severe hypertension in ACE2-deficient mice was associated with exaggerated accumulation of Ang II in the kidney, as determined by MALDI-TOF mass spectrometry. Although the absence of functional ACE2 causes enhanced susceptibility to Ang II-induced hypertension, we found no evidence for a role of ACE2 in the regulation of cardiac structure or function. Our data suggest that ACE2 is a functional component of the renin-angiotensin system, metabolizing Ang II and thereby contributing to regulation of blood pressure.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Aug. 8, 2006, 6:23 p.m. by: hsueh   email:
home page:
last update: Aug. 29, 2021, 6:56 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form