Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

neogenin 1 OKDB#: 3582
 Symbols: NEO1 Species: human
 Synonyms: NGN, IGDCC2, NTN1R2  Locus: 15q24.1 in Homo sapiens
HPMR


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment This gene encodes a cell surface protein that is a member of the immunoglobulin superfamily. The encoded protein consists of four N-terminal immunoglobulin-like domains, six fibronectin type III domains, a transmembrane domain and a C-terminal internal domain that shares homology with the tumor suppressor candidate gene DCC. This protein may be involved in cell growth and differentiation and in cell-cell adhesion. Defects in this gene are associated with cell proliferation in certain cancers. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2010]

NCBI Summary: This gene encodes a cell surface protein that is a member of the immunoglobulin superfamily. The encoded protein consists of four N-terminal immunoglobulin-like domains, six fibronectin type III domains, a transmembrane domain and a C-terminal internal domain that shares homology with the tumor suppressor candidate gene DCC. This protein may be involved in cell growth and differentiation and in cell-cell adhesion. Defects in this gene are associated with cell proliferation in certain cancers. Alternate splicing results in multiple transcript variants. [provided by RefSeq, Feb 2010]
General function Receptor
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment Ligands, Receptors, and Transcription Factors that Mediate Inter-Cellular and Intra-Cellular Communication during Ovarian Follicle Development. Bernabé BP et al. (2020) Reliably producing a competent oocyte entails a deeper comprehension of ovarian follicle maturation, a very complex process that includes meiotic maturation of the female gamete, the oocyte, together with the mitotic divisions of the hormone-producing somatic cells. In this report, we investigate murine ovarian folliculogenesis in vivo using publicly available time-series microarrays from primordial to antral stage follicles. Manually curated protein interaction networks were employed to identify autocrine and paracrine signaling between the oocyte and the somatic cells (granulosa and theca cells) at multiple stages of follicle development. We established plausible protein-binding interactions between expressed genes that encode secreted factors and expressed genes that encode cellular receptors. Some computationally identified signaling interactions are well established, such as the paracrine signaling from the oocyte to the somatic cells through the oocyte-secreted growth factor Gdf9, while others are novel connections in term of ovarian folliculogenesis, such as the possible paracrine connection from somatic-secreted factor Ntn3 to the oocyte receptor Neo1. Additionally, we identified several of the likely transcription factors that might control the dynamic transcriptome during ovarian follicle development, noting that the YAP/TAZ signaling pathway is very active in vivo. This novel dynamic model of signaling and regulation can be employed to generate testable hypotheses regarding follicle development that could be validated experimentally, guiding the improvement of culture media to enhance in vitro ovarian follicle maturation and possibly novel therapeutic targets for reproductive diseases.////////////////// Expression Studies of Neogenin and Its Ligand Hemojuvelin in Mouse Tissues. Rodriguez A et al. Juvenile hemochromatosis is a severe hereditary iron overload disease caused by mutations in the HJV (hemojuvelin) and HAMP (hepcidin) genes. Hepcidin is an important iron regulatory hormone, and hemojuvelin may regulate hepcidin synthesis via the multifunctional membrane receptor neogenin. We explored the expression of murine hemojuvelin and neogenin mRNAs and protein. Real time RT-PCR analysis of 18 tissues from male and female mice was performed to examine the mRNA expression profiles. To further study protein expression and localization we used immunohistochemistry on several tissues from three mouse strains. Mouse Neo1 mRNA was detectable in the 18 tissues tested, the highest signals being evident in the ovary, uterus, and testis. Neogenin protein was observed in the brain, skeletal muscle, heart, liver, stomach, duodenum, ileum, colon, renal cortex, lung, testis, ovary, oviduct, and uterus. The spleen, thymus and pancreas were negative for neogenin. The highest signals for Hjv mRNA were detectable in the skeletal muscle, heart, esophagus, and liver. The results indicate that Neo1 mRNA is widely expressed in both male and female mouse tissues with the highest signals detected in the reproductive system. Moreover, Hjv and Neo1 mRNAs are simultaneously expressed in skeletal muscle, heart, esophagus, and liver.
Follicle stages Primordial, Primary, Secondary
Comment Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Gallardo TD et al. Female infertility syndromes are among the most prevalent chronic health disorders in women, but their genetic basis remains unknown because of uncertainty regarding the number and identity of ovarian factors controlling the assembly, preservation, and maturation of ovarian follicles. To systematically discover ovarian fertility genes en masse, we employed a mouse model (Foxo3) in which follicles are assembled normally but then undergo synchronous activation. We developed a microarray-based approach for the systematic discovery of tissue-specific genes and, by applying it to Foxo3 ovaries and other samples, defined a surprisingly large set of ovarian factors (n = 348, approximately 1% of the mouse genome). This set included the vast majority of known ovarian factors, 44% of which when mutated produce female sterility phenotypes, but most were novel. Comparative profiling of other tissues, including microdissected oocytes and somatic cells, revealed distinct gene classes and provided new insights into oogenesis and ovarian function, demonstrating the utility of our approach for tissue-specific gene discovery. This study will thus facilitate comprehensive analyses of follicle development, ovarian function, and female infertility. This is an somatic cell-specific gene.
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Sept. 28, 2006, 8:11 a.m. by: hsueh   email:
home page:
last update: Jan. 21, 2020, 1:43 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form