Oocyte maturation, Early embryo development
, First polar body extrusion
Comment
Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. Mtango NR et al. Ubiquitin C-terminal hydrolases (UCHs) comprise a family of deubiquitinating enzymes that play a role in the removal of multi-ubiquitin chains from proteins that are posttranslationally modified by ubiquitination to be targeted for proteolysis by the 26S proteasome. The UCH-enzymes also generate free monomeric ubiquitin from precursor multi-ubiquitin chains and, in some instances, may rescue ubiquitinated proteins from degradation. This study examined the roles of two oocyte-expressed UCHs, UCHL1 and UCHL3 in murine and rhesus monkey oocyte maturation. The Uchl1 and Uchl3 mRNAs were highly expressed in GV and MII oocytes, and were associated with the oocyte cortex (UCHL1) and meiotic spindle (UCHL3). Microinjection of the UCH-family enzyme inhibitor, ubiquitin-aldehyde (UBAL) to GV oocytes prevented oocyte meiotic progression beyond metaphase I in a majority of treated oocytes and caused spindle and first polar body anomalies. Injection of antibodies against UCHL3 disrupted oocyte maturation and caused meiotic anomalies, including abnormally long meiotic spindles. A selective, cell permeant inhibitor of UCHL3, 4, 5, 6, 7-Tetrachloroidan-1, 3-dione also caused meiotic defects and chromosome misalignment. Cortical granule localization in the oocyte cortex was disrupted by UBAL injected after oocyte maturation. We conclude that the activity of oocyte UCHs contributes to oocyte maturation by regulating the oocyte cortex and meiotic spindle. J. Cell. Physiol. 2011 Wiley-Liss, Inc.
Expression regulated by
Comment
Ovarian localization
Oocyte
Comment
Localization of ubiquitin C-terminal hydrolase l1 in mouse ova and its function in the plasma membrane to block polyspermy. Sekiguchi S et al. Protein degradation is essential for oogenesis and embryogenesis. The ubiquitin-proteasome system regulates many cellular processes via the rapid degradation of specific proteins. Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is exclusively expressed in neurons, testis, ovary, and placenta, each of which has unique biological activities. However, the functional role of UCH-L1 in mouse oocytes remains unknown. Here, we report the expression pattern of UCH-L1 and its isozyme UCH-L3 in mouse ovaries and embryos. Using immunocytochemistry, UCH-L1 was selectively detected on the plasma membrane, whereas UCH-L3 was mainly detected in the cytoplasm, suggesting that these isozymes have distinct functions in mouse eggs. To further investigate the functional role of UCH-L1 in mouse eggs, we analyzed the fertilization rate of UCH-L1-deficient ova of gad female mice. Female gad mice had a significantly increased rate of polyspermy in in vitro fertilization assays, although the rate of fertilization did not differ significantly from wild-type mice. In addition, the litter size of gad female mice was significantly reduced compared with wild-type mice. These results may identify UCH-L1 as a candidate for a sperm-oocyte interactive binding or fusion protein on the plasma membrane that functions during the block to polyspermy in mouse oocytes.