Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

BUB3 mitotic checkpoint protein OKDB#: 3689
 Symbols: BUB3 Species: human
 Synonyms: BUB3L, hBUB3  Locus: 10q26.13 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes a protein involved in spindle checkpoint function. The encoded protein contains four WD repeat domains and has sequence similarity with the yeast BUB3 protein. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. [provided by RefSeq, Jul 2008]
General function Chromosome organization, DNA repair
Comment
Cellular localization Nuclear
Comment
Ovarian function Oogenesis
Comment The cohesin release factor Wapl interacts with Bub3 to govern SAC activity in female meiosis I. Zhou C et al. (2020) During mitotic prophase, cohesins are removed from chromosome arms by Wapl to ensure faithful sister chromatid separation. However, during female meiosis I, the resolution of chiasmata requires the proteolytic cleavage of cohesin subunit Rec8 along chromosome arms by Separase to separate homologs, and thus the role of Wapl remained unknown. Here, we report that Wapl functions as a regulator of spindle assembly checkpoint (SAC) to prevent aneuploidy in meiosis I. Depletion of Wapl accelerates meiotic progression, inactivates SAC, and causes meiotic defects such as aberrant spindle/chromosome structure and incorrect kinetochore-microtubule (K-MT) attachment, consequently leading to aneuploid eggs. Notably, we identify Bub3 as a binding partner of Wapl by immunoprecipitation and mass spectrometry analysis. We further determine that Wapl controls the SAC activity by maintaining Bub3 protein level and document that exogenous Bub3 restores the normal meiosis in Wapl-depleted oocytes. Together, our findings uncover unique, noncanonical roles for Wapl in mediating control of the SAC in female meiosis I.//////////////////Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. Li M et al. In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1-3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.
Expression regulated by
Comment
Ovarian localization Oocyte
Comment Identifying new human oocyte marker genes: a microarray approach. Gasca S et al. The efficacy of classical IVF techniques is still impaired by poor implantation and pregnancy rates after embryo transfer. This is mainly due to a lack of reliable criteria for the selection of embryos with sufficient development potential. Several studies have provided evidence that some gene expression levels could be used as objective markers of oocyte and embryo competence and capacity to sustain a successful pregnancy. These analyses usually use reverse transcription-polymerase chain reaction to look at small sets of pre-selected genes. However, microarray approaches allow the identification of a wider range of cellular marker genes which could include additional and perhaps more suitable genes that could serve as embryo selection markers. Microarray screenings of around 30,000 genes on U133P Affymetrix(trade mark)gene chips made it possible to establish the expression profile of these genes as well as other related genes in human oocytes and cumulus cells. This study identifies new potential regulators and marker genes such as BARD1, RBL2, RBBP7, BUB3 or BUB1B, which are involved in oocyte maturation.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Feb. 22, 2007, 12:24 p.m. by: hsueh   email:
home page:
last update: April 15, 2020, 3:05 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form