Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

lysine demethylase 1A OKDB#: 3696
 Symbols: KDM1A Species: human
 Synonyms: AOF2, CPRF, KDM1, LSD1, BHC110  Locus: 1p36.12 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment important for epigenetic modifications///// /Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Stewart KR et al. (2015) Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.//////////////////

NCBI Summary: This gene encodes a nuclear protein containing a SWIRM domain, a FAD-binding motif, and an amine oxidase domain. This protein is a component of several histone deacetylase complexes, though it silences genes by functioning as a histone demethylase. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Apr 2009]
General function Oncogenesis, Enzyme , Epigenetic modifications
Comment
Cellular localization Nuclear
Comment
Ovarian function Follicle endowment, Oocyte maturation
Comment LSD1 contributes to programmed oocyte death by regulating the transcription of autophagy adaptor SQSTM1/p62. He M et al. (2020) In female mammals, the size of the initially established primordial follicle (PF) pool within the ovaries determines the reproductive lifespan of females. Interestingly, the establishment of the PF pool is accompanied by a remarkable programmed oocyte loss for unclear reasons. Although apoptosis and autophagy are involved in the process of oocyte loss, the underlying mechanisms require substantial study. Here, we identify a new role of lysine-specific demethylase 1 (LSD1) in controlling the fate of oocytes in perinatal mice through regulating the level of autophagy. Our results show that the relatively higher level of LSD1 in fetal ovaries sharply reduces from 18.5 postcoitus (dpc). Meanwhile, the level of autophagy increases while oocytes are initiating programmed death. Specific disruption of LSD1 resulted in significantly increased autophagy and obviously decreased oocyte number compared with the control. Conversely, the oocyte number is remarkably increased by the overexpression of Lsd1 in ovaries. We further demonstrated that LSD1 exerts its role by regulating the transcription of p62 and affecting autophagy level through its H3K4me2 demethylase activity. Finally, in physiological conditions, a decrease in LSD1 level leads to an increased level of autophagy in the oocyte when a large number of oocytes are being lost. Collectively, LSD1 may be one of indispensible epigenetic molecules who protects oocytes against preterm death through repressing the autophagy level in a time-specific manner. And epigenetic modulation contributes to programmed oocyte death by regulating autophagy in mice.////////////////// Lsd1 restricts the number of germline stem cells by regulating multiple targets in escort cells. Eliazer S 2014 et al. Specialized microenvironments called niches regulate tissue homeostasis by controlling the balance between stem cell self-renewal and the differentiation of stem cell daughters. However the mechanisms that govern the formation, size and signaling of in vivo niches remain poorly understood. Loss of the highly conserved histone demethylase Lsd1 in Drosophila escort cells results in increased BMP signaling outside the cap cell niche and an expanded germline stem cell (GSC) phenotype. Here we present evidence that loss of Lsd1 also results in gradual changes in escort cell morphology and their eventual death. To better characterize the function of Lsd1 in different cell populations within the ovary, we performed Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq). This analysis shows that Lsd1 associates with a surprisingly limited number of sites in escort cells and fewer, and often, different sites in cap cells. These findings indicate that Lsd1 exhibits highly selective binding that depends greatly on specific cellular contexts. Lsd1 does not directly target the dpp locus in escort cells. Instead, Lsd1 regulates engrailed expression and disruption of engrailed and its putative downstream target hedgehog suppress the Lsd1 mutant phenotype. Interestingly, over-expression of engrailed, but not hedgehog, results in an expansion of GSC cells, marked by the expansion of BMP signaling. Knockdown of other potential direct Lsd1 target genes, not obviously linked to BMP signaling, also partially suppresses the Lsd1 mutant phenotype. These results suggest that Lsd1 restricts the number of GSC-like cells by regulating a diverse group of genes and provide further evidence that escort cell function must be carefully controlled during development and adulthood to ensure proper germline differentiation. /////////////////////////
Expression regulated by
Comment
Ovarian localization Primordial Germ Cell, Oocyte
Comment Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Stewart KR et al. (2015) Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.////////////////// Molecular cloning, tissue expression, and analysis with genome DNA methylation of porcine LSD1 gene. Chai J et al. (2013) Lysine-specific demethylase 1 (LSD1) functioned as a demethyl methylase gene, underlying a wide range of biological processes, including cancer, cell apoptosis, differentiation, and development. To further understand the functions of the porcine LSD1 gene, we first obtained cDNA sequence of porcine LSD1 gene, using in silico cloning method. We further found that the porcine LSD1 gene has two transcripts, in which cDNA sequences are 2,716 and 2,656 bp, ORF are 2,622 and 2,562 bp, respectively. Then, RT-PCR analysis showed that the LSD1 gene is expressed in various tissues and relatively higher in the tissues of ovary, kidney, and spleen. Besides, the LSD1 gene was expressed higher in the growth nonage and peaked at 3 days in muscle tissue. Meanwhile, the expression of two transcript variants of LSD1 gene presented the same change trend. Besides, the level of DNA methylation was approximately fourfold higher in a 3-day muscle than in an old pig (180 days), significantly positive related to the gene expression of LSD1 (R = 0.9362, P < 0.05), and declined with growing age. Cloning, expression pattern, and analysis with genome DNA methylation of porcine LSD1 gene laid a foundation to clarify the molecular mechanisms of porcine growth and development and also for further work on animal breeding.//////////////////
Follicle stages
Comment
Phenotypes
Mutations 5 mutations

Species: D. melanogaster
Mutation name: None
type: null mutation
fertility: infertile - ovarian defect
Comment: Mutation of Drosophila Lsd1 Disrupts H3-K4 Methylation, Resulting in Tissue-Specific Defects during Development. Di Stefano L et al. Histone-tail modifications play a fundamental role in the processes that establish chromatin structure and determine gene expression [1-4]. One such modification, histone methylation, was considered irreversible until the recent discovery of histone demethylases. Lsd1 was the first histone demethylase to be identified [5]. Lsd1 is highly conserved in many species, from yeast to humans, but its function has primarily been studied through biochemical approaches. The mammalian ortholog has been shown to demethylate monomethyl- and dimethyl-K4 and -K9 residues of histone H3 [5, 6]. Here we describe the effects of Lsd1 mutation in Drosophila. The inactivation of dLsd1 strongly affects the global level of monomethyl- and dimethyl-H3-K4 methylation and results in elevated expression of a subset of genes. dLsd1 is not an essential gene, but animal viability is strongly reduced in mutant animals in a gender-specific manner. Interestingly, dLsd1 mutants are sterile and possess defects in ovary development, indicating that dLsd1 has tissue-specific functions. Mutant alleles of dLsd1 suppress positional-effect variegation, suggesting a disruption of the balance between euchromatin and heterochromatin. Taken together, these results show that dLsd1-mediated H3-K4 demethylation has a significant and specific role in Drosophila development.

Species: D. melanogaster
Mutation name: None
type: null mutation
fertility: None
Comment: Loss of lysine-specific demethylase 1 nonautonomously causes stem cell tumors in the Drosophila ovary. Eliazer S et al. Specialized microenvironments called niches keep stem cells in an undifferentiated and self-renewing state. Dedicated stromal cells form niches by producing a variety of factors that act directly on stem cells. The size and signaling output of niches must be finely tuned to ensure proper tissue homeostasis. Although advances have been made in identifying factors that promote niche cell fate, the mechanisms that restrict niche cell formation during development and limit niche signaling output in adults remain poorly understood. Here, we show that the histone lysine-specific demethylase 1 (Lsd1) regulates the size of the germline stem cell (GSC) niche in Drosophila ovaries. GSC maintenance depends on bone morphogenetic protein (BMP) signals produced by a small cluster of cap cells located at the anterior tip of the germarium. Lsd1 null mutant ovaries carry small germline tumors containing an expanded number of GSC-like cells with round fusomes that display ectopic BMP signal responsiveness away from the normal niche. Clonal analysis and cell type-specific rescue experiments demonstrate that Lsd1 functions within the escort cells (ECs) that reside immediately adjacent to cap cells and prevents them from ectopically producing niche-specific signals. Temporally restricted gene knockdown experiments suggest that Lsd1 functions both during development, to specify EC fate, and in adulthood, to prevent ECs from forming ectopic niches independent of changes in cell fate. Further analysis shows that Lsd1 functions to repress decapentaplegic (dpp) expression in adult germaria. The role of Lsd1 in regulating niche-specific signals may have important implications for understanding how disruption of its mammalian homolog contributes to cancer and metastasis.

Species: mouse
Mutation name:
type: targeted overexpression
fertility: fertile
Comment: Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Siklenka K et al. (2015) A father's lifetime experiences can be transmitted to his offspring to affect health and development. However, the mechanisms underlying paternal epigenetic transmission are unclear. Unlike in somatic cells, there are few nucleosomes in sperm, and their function in epigenetic inheritance is unknown. We generated transgenic mice in which overexpression of the histone H3 lysine 4 (H3K4) demethylase KDM1A (also known as LSD1) during spermatogenesis reduced H3K4 dimethylation in sperm. KDM1A overexpression in one generation severely impaired development and survivability of offspring. These defects persisted transgenerationally in the absence of KDM1A germline expression and were associated with altered RNA profiles in sperm and offspring. We show that epigenetic inheritance of aberrant development can be initiated by histone demethylase activity in developing sperm, without changes to DNA methylation at CpG-rich regions.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice. Kim J et al. (2015) Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: embryonic lethal
Comment: Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally. Wasson JA et al. (2016) Somatic cell nuclear transfer has established that the oocyte contains maternal factors with epigenetic reprogramming capacity. Yet the identity and function of these maternal factors during the gamete to embryo transition remains poorly understood. In C. elegans, LSD1/KDM1A enables this transition by removing H3K4me2 and preventing the transgenerational inheritance of transcription patterns. Here we show that loss of maternal LSD1/KDM1A in mice results in embryonic arrest at the 1-2 cell stage, with arrested embryos failing to undergo the maternal-to-zygotic transition. This suggests that LSD1/KDM1A maternal reprogramming is conserved. Moreover, partial loss of maternal LSD1/KDM1A results in striking phenotypes weeks after fertilization; including perinatal lethality and abnormal behavior in surviving adults. These maternal effect hypomorphic phenotypes are associated with alterations in DNA methylation and expression at imprinted genes. These results establish a novel mammalian paradigm where defects in early epigenetic reprogramming can lead to defects that manifest later in development.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: May 2, 2007, 9:19 a.m. by: hsueh   email:
home page:
last update: Feb. 20, 2020, 10:29 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form