Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Complement Component C1q-binding Protein OKDB#: 3707
 Symbols: C1QBP Species: human
 Synonyms: p32, HABP1, gC1qR, GC1QBP, SF2p32, gC1Q-R,C1q GLOBULAR DOMAIN-BINDING PROTEIN|HYALURONIC ACID-BINDING PROTEIN 1, HABP1|P32 SPLICING FACTOR SF2-ASSOCIATED PROTEIN  Locus: 17p13.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The human complement subcomponent C1q associates with C1r and C1s in order to yield the first component of the serum complement system. The protein encoded by this gene is known to bind to the globular heads of C1q molecules and inhibit C1 activation. This protein has also been identified as the p32 subunit of pre-mRNA splicing factor SF2, as well as a hyaluronic acid-binding protein. [provided by RefSeq, Jul 2008]
General function
Comment
Cellular localization Secreted, Cytoplasmic
Comment
Ovarian function Cumulus expansion
Comment Disrupted hyaluronan binding protein 1 (HABP1) expression: one of the key mediator for ovarian dysfunction in polycystic ovary rat. Arif M et al. (2014) Proper follicular development is crucial for cumulus-oocyte complex (COC) maturation, ovulation and luteinisation. All these ovarian processes are regulated by finely tuned rapid tissue remodeling that involves hyaluronan and interconnecting hyaladherins-rich extracellular matrix synthesis and its breakdown by various proteinase systems like matrix metalloproteinase (MMP). Disrupted tissue remodeling machinery can result into pathophysiologies like atretic follicular cysts formation in polycystic ovary syndrome (PCOS). In present study, we employ superovulated (SO) and polycystic ovary (PCO) rat models and demonstrate that on contrary to SO, PCO rat ovary illustrates abnormal follicular morphology with differential levels of various ovarian factors [like HA (hyaluronan), TSG-6 (TNF-α-stimulated gene/protein 6), PTX-3 (pentraxin-3), HABP1 (hyaluronan binding protein 1), MMP2 (matrix metalloproteinase), MT1-MMP (membrane type 1-matrix metalloproteinase) and COX2 (Cyclooxygenase-2)] along with hyperactivities of gelatinases (like MMP9 and -2). Besides cultured COC expansion is blocked by anti-HABP1 antibody treatment showing reduced HABP1 expression. Overall, as MT1-MMP has inverse relation with HABP1 level and direct effect on MMP2 activity, the observations from current in vivo and in vitro studies indicate that disrupted ovarian HABP1 along with concurrent altered expression and hyperactivation of related MMPs can lead to abnormal follicular maturation resulting into ovarian dysfunction in PCO rat.//////////////////
Expression regulated by LH
Comment
Ovarian localization Cumulus, Granulosa, Follicular Fluid
Comment Higher expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR/SF2) during follicular development and cumulus oocyte complex maturation in rat. Thakur SC et al. Ovulation is a complex process of releasing a fertilizable oocyte and depends on the proper formation of an extracellular hyaluronan rich matrix by the cumulus oocyte complex (COC). The formation of a HA rich matrix is dependent on the synthesis and organization of HA in the presence of several biomolecules that mediate its crosslinking. To gain an insight into the follicular maturation and COC expansion, we have studied the expression of hyaluronan binding protein 1 (HABP1), which is known to interact specifically with hyaluronan. The level of HABP1 increased markedly during ovulation after gonadotropin stimulation, and the overexpression was seen in mural granulosa cells, expanding cumulus cells and follicular fluid. However, HABP1 could not be detected in the luteal cells of corpus luteum after ovulation. Such increased expression of HABP1 was observed both during in vivo and in vitro conditions of COC expansion. The level of HABP1 transcript was upregulated up to fivefold after COC expansion as compared to compact COC. Immunofluorescence analysis showed HABP1 to be localized in the cytoplasm and extracellular matrix, suggesting its role in ECM organization. The cultured expanded COC treated with hyaluronidase for different time periods showed the gradual dispersion of COC, which coincide with the loss of HABP1 from the matrix suggesting that HABP1 is bound to hyaluronan. These results indicate that HABP1 expressed in rat COCs during maturation may facilitate the formation of the HA matrix in the extracellular space around the oocyte with cumulus expansion during maturation. Mol. Reprod. Dev. (c) 2007 Wiley-Liss, Inc.
Follicle stages Preovulatory
Comment
Phenotypes
Mutations 2 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: embryonic lethal
Comment: p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Yagi M et al. (2013) p32 is an evolutionarily conserved and ubiquitously expressed multifunctional protein. Although p32 exists at diverse intra and extracellular sites, it is predominantly localized to the mitochondrial matrix near the nucleoid associated with mitochondrial transcription factor A. Nonetheless, its function in the matrix is poorly understood. Here, we determined p32 function via generation of p32-knockout mice. p32-deficient mice exhibited mid-gestation lethality associated with a severe developmental defect of the embryo. Primary embryonic fibroblasts isolated from p32-knockout embryos showed severe dysfunction of the mitochondrial respiratory chain, because of severely impaired mitochondrial protein synthesis. Recombinant p32 binds RNA, not DNA, and endogenous p32 interacts with all mitochondrial messenger RNA species in vivo. The RNA-binding ability of p32 is well correlated with the mitochondrial translation. Co-immunoprecipitation revealed the close association of p32 with the mitoribosome. We propose that p32 is required for functional mitoribosome formation to synthesize proteins within mitochondria.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: embryonic lethal
Comment: p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Yagi M et al. (2013) p32 is an evolutionarily conserved and ubiquitously expressed multifunctional protein. Although p32 exists at diverse intra and extracellular sites, it is predominantly localized to the mitochondrial matrix near the nucleoid associated with mitochondrial transcription factor A. Nonetheless, its function in the matrix is poorly understood. Here, we determined p32 function via generation of p32-knockout mice. p32-deficient mice exhibited mid-gestation lethality associated with a severe developmental defect of the embryo. Primary embryonic fibroblasts isolated from p32-knockout embryos showed severe dysfunction of the mitochondrial respiratory chain, because of severely impaired mitochondrial protein synthesis. Recombinant p32 binds RNA, not DNA, and endogenous p32 interacts with all mitochondrial messenger RNA species in vivo. The RNA-binding ability of p32 is well correlated with the mitochondrial translation. Co-immunoprecipitation revealed the close association of p32 with the mitoribosome. We propose that p32 is required for functional mitoribosome formation to synthesize proteins within mitochondria.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: June 20, 2007, 12:26 p.m. by: hsueh   email:
home page:
last update: May 7, 2021, 4:20 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form