Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

KHdc1a; kdg1 OKDB#: 3725
 Symbols: Species: mouse
 Synonyms:  Locus:


For retrieval of Nucleotide and Amino Acid sequences please go to: Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed KHDC1/DPPA5/ECAT1/OOEP gene family. Pierre A et al. Several recent studies have shown that genes specifically expressed by the oocyte are subject to rapid evolution, in particular via gene duplication mechanisms. In the present work, we have focused our attention on a family of genes, specific to eutherian mammals, that are located in unstable genomic regions. We have identified two genes specifically expressed in the mouse oocyte: Khdc1a (KH homology domain containing 1a, also named Ndg1 for Nur 77 downstream gene 1, a target gene of the Nur77 orphan receptor), and another gene structurally related to Khdc1a that we have renamed Khdc1b. In this paper, we show that Khdc1a and Khdc1b belong to a family of several members including the so-called developmental pluripotency A5 (Dppa5) genes, the cat/dog oocyte expressed protein (cat OOEP and dog OOEP) genes, and the ES cell-associated transcript 1 (Ecat1) genes. These genes encode structurally related proteins that are characterized by an atypical RNA-binding KH domain and are specifically expressed in oocytes and/or embryonic stem cells. They are absent in fish, bird, and marsupial genomes and thus seem to have first appeared in eutherian mammals, in which they have evolved rapidly. They are located in a single syntenic region in all mammalian genomes studied, except in rodents, in which a synteny rupture due to a paracentric inversion has separated this gene family into two genomic regions and seems to be associated with increased instability in these regions. Overall, we have identified and characterized a novel family of oocyte and/or embryonic stem cell-specific genes encoding proteins that share an atypical KH RNA-binding domain and that have evolved rapidly since their emergence in eutherian mammalian genomes.

General function RNA binding
Comment
Cellular localization
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment KHDC1A, a Novel Translational Repressor, Induces Endoplasmic Reticulum-Dependent Apoptosis. Cai C et al. RNA binding proteins are characterized as a new family of apoptosis inducers; however, the mechanism by which they induce apoptosis is poorly understood. KHDC1 family members were recently identified as K-homology (KH)-domain containing RNA binding proteins that are unique to eutherian mammals and highly expressed in oocytes. In this study, we report that the expression of KHDC1A induces caspase-3 dependent apoptosis and inhibits mRNA translation, and the translational repression is independent of apoptosis. We demonstrate that both the N-terminus and C-terminus of KHDC1A are required for its pro-apoptotic and translational repression activities. Furthermore, in the C-terminus of KHDC1A, a putative trans-membrane motif (TMM) is critical for these activities. In addition, the ectopically expressed KHDC1A is localized to the endoplasmic reticulum (ER) and changes the morphology of the ER. The inhibition of ER-specific caspase-12 successfully rescues KHDC1A-induced apoptosis, but not Fas-induced apoptosis. Taken together, we conclude that KHDC1A functions as a global translational repressor and induces apoptosis through an ER-dependent signaling pathway.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
Recent Publications
None
Search for Antibody


created: Oct. 11, 2007, 6:06 a.m. by: hsueh   email:
home page:
last update: June 27, 2012, 12:49 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form