Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Dopamine Receptor D5 OKDB#: 3734
 Symbols: DRD5 Species: human
 Synonyms: DBDR, DRD1B, DRD1L2, MGC10601,DOPAMINE RECEPTOR D1B, DRD1B|DYSTONIA, PRIMARY CERVICAL, INCLUDED  Locus: 4p16.1 in Homo sapiens
HPMR


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes the D5 subtype of the dopamine receptor. The D5 subtype is a G-protein coupled receptor which stimulates adenylyl cyclase. This receptor is expressed in neurons in the limbic regions of the brain. It has a 10-fold higher affinity for dopamine than the D1 subtype. Pseudogenes related to this gene reside on chromosomes 1 and 2.
General function Receptor
Comment
Cellular localization Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Granulosa
Comment Dopamine receptor repertoire of human granulosa cells. Rey-Ares V et al. ABSTRACT: BACKGROUND: High levels of dopamine (DA) were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs) derived from women undergoing in vitro fertilization (IVF) are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. METHODS: Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4) were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. RESULTS: We found members of the two DA receptor families (D1- and D2 -like) associated with different signaling pathways in human GCs, namely D1 (as expected) and D5 (both are Gs coupled and linked to cAMP increase) and D2, D4 (Gi/Gq coupled and linked to IP3/DAG). D3 was not found. The presence of the trophic hormone hCG (10 IU/ml) in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR) or protein levels (immunocytochemistry/Western blotting) of D1,2,4,5 receptors. Expression of prototype receptors for the two families, D1 and D2 was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S). Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed in the absence of extracellular calcium and was abolished by a D2 blocker (L-741,626). DA treatment (48 h) of human GCs resulted in slightly, but significantly enlarged, viable cells. CONCLUSIONS: A previous study showed D1 in human GCs, which are linked to cAMP, and the present study reveals the full spectrum of DA receptors present in these endocrine cells, which also includes D2-like receptors, linked to calcium. Ovarian DA can act thus via D1,2,4,5, which are co-expressed by endocrine cells of the follicle and the corpus luteum and are linked to different signaling pathways. This suggests a complex role of DA in the regulation of ovarian processes.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Oct. 31, 2007, 12:12 p.m. by: hsueh   email:
home page:
last update: Oct. 31, 2007, 12:13 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form