Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

stearoyl-CoA desaturase OKDB#: 3737
 Symbols: SCD Species: human
 Synonyms: SCD1, FADS5, SCDOS, hSCD1, MSTP008  Locus: 10q24.31 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes an enzyme involved in fatty acid biosynthesis, primarily the synthesis of oleic acid. The protein belongs to the fatty acid desaturase family and is an integral membrane protein located in the endoplasmic reticulum. Transcripts of approximately 3.9 and 5.2 kb, differing only by alternative polyadenlyation signals, have been detected. A gene encoding a similar enzyme is located on chromosome 4 and a pseudogene of this gene is located on chromosome 17. [provided by RefSeq, Sep 2015]
General function Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Steroid metabolism, Oocyte maturation
Comment Lipidomics profiling of goose granulosa cell model of stearoyl-CoA desaturase function identifies a pattern of lipid droplets associated with follicle development. Yuan X et al. (2021) Despite their important functions and nearly ubiquitous presence in cells, an understanding of the biology of intracellular lipid droplets (LDs) in goose follicle development remains limited. An integrated study of lipidomic and transcriptomic analyses was performed in a cellular model of stearoyl-CoA desaturase (SCD) function, to determine the effects of intracellular LDs on follicle development in geese. Numerous internalized LDs, which were generally spherical in shape, were dispersed throughout the cytoplasm of granulosa cells (GCs), as determined using confocal microscopy analysis, with altered SCD expression affecting LD content. GC lipidomic profiling showed that the majority of the differentially abundant lipid classes were glycerophospholipids, including PA, PC, PE, PG, PI, and PS, and glycerolipids, including DG and TG, which enriched glycerophospholipid, sphingolipid, and glycerolipid metabolisms. Furthermore, transcriptomics identified differentially expressed genes (DEGs), some of which were assigned to lipid-related Gene Ontology slim terms. More DEGs were assigned in the SCD-knockdown group than in the SCD-overexpression group. Integration of the significant differentially expressed genes and lipids based on pathway enrichment analysis identified potentially targetable pathways related to glycerolipid/glycerophospholipid metabolism. This study demonstrated the importance of lipids in understanding follicle development, thus providing a potential foundation to decipher the underlying mechanisms of lipid-mediated follicle development.//////////////////Primary Culture of Human Cumulus Cells Requires Stearoyl-Coenzyme A Desaturase 1 Activity for Steroidogenesis and Enhancing Oocyte In Vitro Maturation. Fayezi S et al. (2017) Stearoyl-coenzyme A desaturase 1 (SCD1) is a key enzyme in lipid metabolism and is expressed in cumulus cells. The objective of the present study was to evaluate the effect of SCD1 inhibition in human cumulus cells on triglyceride content, steroidogenesis, and oocyte in vitro maturation. Human cumulus cells were exposed to SCD1 inhibitor CAY10566 (SCDinhib) alone or in combination with oleic acid in primary culture. The SCDinhib markedly suppressed triglyceride accumulation (-47%, P = .01), aromatase gene expression (-36%, P = .02), and estradiol production (-49%, P = .01) even at a dose not affecting cell viability and apoptosis. Human immature oocytes at the germinal vesicle (GV) stage were cocultured with pretreated cumulus cells. The rate of oocytes reaching the metaphase II stage was significantly lower in coculture with SCDinhib-treated cumulus cells than with control cumulus cells (-18%, P < .01), which recovered by oleic acid supplementation. This finding on in vitro maturation rate was also reproducible with mouse GV oocytes. The results suggest that SCD1 activity is required for cumulus cell lipid storage and steroidogenesis. In addition, oocyte maturation is negatively affected by SCD1 inhibition in cumulus cells, possibly due to a deficient lipid-mediated paracrine support.//////////////////
Expression regulated by
Comment
Ovarian localization Cumulus
Comment Metabolomic Analysis of SCD during Goose Follicular Development: Implications for Lipid Metabolism. Yuan X et al. (2020) Stearoyl-CoA desaturase (SCD) is known to be an important rate-limiting enzyme in the production of monounsaturated fatty acids (MUFAs). However, the role of this enzyme in goose follicular development is poorly understood. To investigate the metabolic mechanism of SCD during goose follicular development, we observed its expression patterns in vivo and in vitro using quantitative reverse-transcription (qRT)-PCR. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine a cellular model of SCD function in granulosa cells (GCs) via SCD overexpression and knockdown. qRT-PCR analysis showed that SCD was abundantly expressed in the GC layer, and was upregulated in preovulatory follicles. Peak expression was found in F1 and prehierarchal follicles with diameters of 4-6 mm and 8-10 mm, respectively. We further found that mRNA expression and corresponding enzyme activity occur in a time-dependent oscillation pattern in vitro, beginning on the first day of GC culture. By LC-MS/MS, we identified numerous changes in metabolite activation and developed an overview of multiple metabolic pathways, 10 of which were associated with lipid metabolism and enriched in both the overexpressed and knockdown groups. Finally, we confirmed cholesterol and pantothenol or pantothenate as potential metabolite biomarkers to study SCD-related lipid metabolism in goose GCs.//////////////////-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Aardema H et al. (2017) Metabolic rich and poor conditions are both characterized by elevated free fatty acid levels and have been associated with impaired female fertility. In particular, saturated free fatty acids have a dose-dependent negative impact on oocyte developmental competence, while mono-unsaturated free fatty acids appear less harmful. Cumulus cells seem to protect the oocyte against free fatty acids and the aim of this study was to determine the mechanism behind this protection In particular the role of the enzyme stearoyl-CoA desaturase (SCD) that converts saturated into mono-unsaturated fatty acids was investigated. SCD gene and protein were abundantly expressed in cumulus cells, but expression was low in oocytes. The level of SCD protein expression in cumulus cells did not change when COCs were exposed to saturated stearic acid during maturation. SCD inhibition in the presence of stearic acid significantly reduced the developmental competence of oocytes and increased the incidence of apoptosis in cumulus cells. The esterified oleic/stearic acid ratio of the neutral lipid fraction in cumulus cells decreased in the presence of SCD inhibitors when COCs were exposed to saturated free fatty acids during maturation, indicating the SCD specific conversion of saturated fatty acids under non-inhibiting conditions. The observation that cumulus cells can desaturate the potentially toxic stearic acid into oleic acid via SCD activity provides a mechanistic insight into how the cumulus cells protect the oocyte against toxicity by saturated fatty acid.////////////////// Gene expression in human cumulus cells: one approach to oocyte competence. Feuerstein P et al. BACKGROUND Dialogue between the oocyte and cumulus cells is essential for oocyte maturation. A prospective laboratory research project was designed to evaluate transcription of specific genes in cumulus cells harvested before intracytoplasmic sperm injection from pre-ovulatory follicles, according to individual oocyte nuclear maturity and developmental competence. Genes were chosen because their expression was induced by the LH peak [Steroidogenic Acute Regulatory protein (STAR), Cyclooxygenase 2 (COX2 or PTGS2), Amphiregulin (AREG)] or because they were involved in oocyte lipidic metabolism [Stearoyl-Coenzyme A Desaturase 1 and 5 (SCD1 and SCD5)] or in gap-junctions [Connexin 43 (CX43 or GJA1)]. METHODS mRNA levels in cumulus cells were assessed by real-time PCR. RESULTS Expression levels of all genes investigated, except Cx43, were increased after resumption of meiosis. Nuclear maturation was thus associated with increased expression of STAR, COX2, AREG, SCD1 and SCD5 by cumulus cells. When considering only cumulus associated with metaphase II oocytes, gene expression was independent of morphological status at Day 2. In contrast, transcript levels were lower and distributed over a narrower range in cumulus enclosing oocytes achieving blastocyst development at Day 5/6 than in cumulus enclosing oocytes unable to develop beyond the embryo stage. CONCLUSION Further developmental potential from embryo to blastocyst stage was associated with lower expression in a narrow range for these genes.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Oct. 31, 2007, 1:57 p.m. by: hsueh   email:
home page:
last update: May 25, 2021, 9:30 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form