Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

neuropeptide VF precursor OKDB#: 3760
 Symbols: NPVF Species: human
 Synonyms: RFRP, C7orf9  Locus: 7p15.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment
General function Ligand, Hormone
Comment
Cellular localization Secreted
Comment
Ovarian function Steroid metabolism
Comment Role of RFRP-3 in the development of cold stress-induced polycystic ovary phenotype in rats Squicciarini V et al. (2018) RFamide-related peptide (RFRP-3) is a regulator of GnRH secretion from the brain, but it can also act in human ovary to influence steroidogenesis. We aimed to study the putative local role of RFRP-3 in the ovary and its potential participation in the development of a polycystic ovary phenotype induced by chronic sympathetic stress (cold stress). We used adult Sprague–Dawley rats divided into control and stressed groups. In both groups, we studied the effect of intraovarian exposure to RFRP-3 on follicular development and plasma ovarian steroid concentrations. We also tested the effect of RFRP-3 on ovarian steroid production in vitro. Chronic in vivo intraovarian exposure to RFRP-3 decreased basal testosterone concentrations and cold stress-induced progesterone production by the ovary. In vitro, RFRP-3 decreased hCG-induced ovarian progesterone and testosterone secretion. Immunohistochemistry and mRNA expression analysis showed a decrease in Rfrp and expression of its receptor in the ovary of stressed rats, a result which is in line with the increased testosterone levels found in stressed rats. In vivo application of RFRP-3 recovered the low levels of secondary and healthy antral follicles found in stressed rats. Taken together, our data indicate a previously unknown response of hypothalamic and ovarian RFRP-3 to chronic cold stress, influencing ovarian steroidogenesis and follicular dynamics. Thus, it is likely that RFRP-3 modulation in the ovary is a key component of development of the polycystic ovary phenotype.////////////////// RFRP-3, the mammalian ortholog of GnIH, induces cell cycle arrest at G2/M in porcine ovarian granulosa cells. Wang X et al. (2018) RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of gonadotropin-inhibitory hormone (GnIH), has been proposed as a key inhibitory regulator of mammal reproduction. Our previous studies have demonstrated that RFRP-3 inhibited the expression of proliferation-related proteins in porcine granulose cells (GCs), but the inhibitory mechanism causing this has not been discovered. Here, we aim to elucidate the underlying mechanism and determine the cell cycle regulatory sites of action of RFRP-3 on porcine GC proliferation. To this end, the viability of porcine GCs was initially estimated by cell counting kit-8 (CCK-8). We confirmed that different doses of RFRP-3 decreased the cellular viability, suggesting that RFRP-3 could inhibit the proliferation of GCs. Subsequently, we evaluated the direct effects of RFRP-3 on the expression of cell cycle regulators. Compared to the control treated cells, 10-6 and 10-8 M of RFRP-3 effectively reduced the transcription of Cyclin B1 and CDK1 mRNAs. However, treatment with RFRP-3 did not alter Cyclin A2, Cyclin D1, CDK2, or CDK4 mRNA levels. These results suggest that RFRP-3 might be inducing G2/M-phase arrest in porcine GCs. Finally, to further determine the molecular mechanism underlying RFRP-3-mediated G2/M cell cycle arrest, we observed the levels of G2/M cell cycle regulatory factors in RFRP-3-treated porcine GCs. The results showed that RFRP-3 treatment significantly increased the expression of Myt1, p-Wee1 and p-Cdc2, whereas the level of Cyclin B1 significantly decreased in porcine GCs treated with 10-6 M of RFRP-3. Taken together, our data suggest that RFRP-3 regulates the phosphorylation or expression of G2/M cell cycle regulatory factors to induce G2/M-phase arrest via inhibition Cyclin B-CDK1 complex activation in porcine GCs, which might provide an unfavorable condition for porcine GC proliferation.////////////////// Direct effects of RFRP-1, a mammalian GnIH ortholog, on ovarian activities of the cyclic mouse. Dave A et al. (2017) Arg(R)-Phe(F)-amide related peptide-1 (RFRP-1) and -3 (RFRP-3) are known as mammalian orthologs of gonadotropin-inhibitory hormone (GnIH). In mammals, these RFRPs are expressed not only in the hypothalamus and but also in gonads. Inhibitory roles of the hypothalamic and gonadal RFRP-3 in reproduction have been documented in mammals. However, functional roles of the hypothalamic and gonadal RFRP-1 in reproduction are still unclear in mammals. Therefore, in vitro studies were conducted to elucidate the direct effect of RFRP-1, a mammalian GnIH ortholog, on ovarian activities, such as steroidogenesis, apoptosis, cell proliferation and metabolism in the cyclic mouse. The ovaries collected from the proestrus mice were cultured in vitro with different doses (Control, 1ng/ml, 10ng/ml and 100ng/ml) of RFRP-1 for 24h at 37°C. A significant dose-dependent increase in estradiol release from the ovary was detected after the treatment of RFRP-1. Therefore, changes in the ovarian activities, such as steroidogenic markers (luteinizing hormone receptors; LH-R and 3β-hydroxysteroid dehydrogenase; 3β-HSD), apoptotic markers Poly(ADP-ribose) polymerase-1; PARP-1 and cysteine-aspartic protease; caspase-3], a cell proliferation marker (proliferating cell nuclear antigen; PCNA) and metabolic markers (GLUT-4; glucose uptake) were assessed by the treatment of RFRP-1 in the proestrus ovary. The densitometry analysis showed the treatment of RFRP-1 significantly increased the expressions of LH-R and 3β-HSD, steroidogenic markers. In contrast, the expressions of PCNA, a cell proliferation maker; PARP-1 and caspase-3, apoptotic markers were significantly decreased. Interestingly, RFRP-1 treatment further increases significantly glucose uptake and GLUT-4 receptor expression. These findings indicate that RFRP-1 possesses a stimulatory effect on ovarian steroidogenesis in the proestrus mouse. This is the first evidence showing the direct action of RFRP-1 on steroidogenesis in any vertebrate. In addition, RFRP-1 may also act directly on ovarian folliculogenesis as an inhibitory factor.////////////////// Gonadotropin-inhibitory hormone (GnIH) receptor gene is expressed in the chicken ovary: potential role of GnIH in follicular maturation. [Maddineni SR et al. Gonadotropin-inhibitory hormone (GnIH), an RFamide peptide, has been found to inhibit pituitary LH secretion in avian and mammalian species. The gene encoding a putative receptor for GnIH (GnIHR) was recently identified in the chicken and Japanese quail brain and pituitary gland. GnIHR appears to be a seven-transmembrane protein belonging to a family of G-protein-coupled receptors. In the present study, we have characterized the expression of GnIHR mRNA in the chicken ovary and demonstrate that GnIHR may exert an inhibitory effect on ovarian follicular development. By RT-PCR, we detected GnIHR mRNA in the chicken testis and in the ovary, specifically both thecal and granulosa cell layers. Real-time quantitative PCR analysis revealed greater GnIHR mRNA quantity in theca cells of prehierarchial follicles compared with that of preovulatory follicles. GnIHR mRNA quantity was significantly decreased in sexually mature chicken ovaries versus ovaries of sexually immature chickens. Estradiol (E(2)) and/or progesterone (P(4)) treatment of sexually immature chickens significantly decreased ovarian GnIHR mRNA abundance. Treatment of prehierarchial follicular granulosa cells in vitro with chicken GnIH peptide significantly decreased basal but not FSH-stimulated cellular viability. Collectively, our results indicate that the ovarian GnIHR is likely to be involved in ovarian follicular development. A decrease in ovarian GnIHR mRNA abundance due to sexual maturation or by E(2) and/or P(4) treatment would implicate an inhibitory role for GnIHR in ovarian follicular development. Furthermore, GnIH may affect follicular maturation by decreasing the viability of prehierarchial follicular granulosa cells through binding to GnIHR.
Expression regulated by
Comment
Ovarian localization Granulosa, Theca
Comment Gonadotropin-inhibitory hormone and its receptor in the avian reproductive system. Bentley GE et al. Many hormones that are classified as neuropeptides are synthesized in vertebrate gonads in addition to the brain. Receptors for these hormones are also expressed in gonadal tissue; thus there is potential for a highly localized autocrine or paracrine effect of these hormones on a variety of gonadal functions. In the present study we focused on gonadotropin-inhibitory hormone (GnIH), a neuropeptide that was first discovered in the hypothalamus of birds. We present different lines of evidence for the synthesis of GnIH and its receptor in the avian reproductive system including gonads and accessory reproductive organs by studies on two orders of birds: Passeriformes and Galliformes. Binding sites for GnIH were initially identified via in vivo and in vitro receptor fluorography, and were localized in ovarian granulosa cells along with the interstitial layer and seminiferous tubules of the testis. Furthermore, species-specific primers produced clear PCR products of GnIH and GnIH receptor (GnIH-R) in songbird and quail gonadal and other reproductive tissues, such as oviduct, epididymis and vas deferens. Sequencing of the PCR products confirmed their identities. Immunocytochemistry detected GnIH peptide in ovarian thecal and granulosa cells, testicular interstitial cells and germ cells and pseudostratified columnar epithelial cells in the epididymis. In situ hybridization of GnIH-R mRNA in testes produced a strong reaction product which was localized to the germ cells and interstitium. In the epididymis, the product was also localized in the pseudostratified columnar epithelial cells. In sum, these results indicate that the avian reproductive system has the capability to synthesize and bind GnIH in several tissues. The distribution of GnIH and its receptor suggest a potential for autocrine/paracrine regulation of gonadal steroid production and germ cell differentiation and maturation.
Follicle stages
Comment Immunohistochemical localization of GnRH and RFamide-related peptide-3 in the ovaries of mice during the estrous cycle. Singh P et al. Gonadotropin releasing hormone (GnRH) has now been suggested as an important intraovarian regulatory factor. Gonadotropin inhibitory hormone (GnIH) a hypothalamic dodecapeptide, acts opposite to GnRH. GnRH, GnIH and their receptors have been demonstrated in the gonads. In order to find out the physiological significance of these neuropeptides in the ovary, we aim to investigate changes in the abundance of GnRH I and GnIH in the ovary of mice during estrous cycle. The present study investigated the changes in GnRH I, GnRH I-receptor and RFRP-3 protein expression in the ovary of mice during estrous cycle by immunohistochemistry and immunoblot analysis. The immunoreactivity of GnRH I and its receptor and RFRP-3 were mainly localized in the granulosa cells of the healthy and antral follicles during proestrus and estrus and in the luteal cells during diestrus 1 and 2 phases. The relative abundance of immunoreactivity of GnRH I, GnRH I-receptor and RFRP-3 undergo significant variation during proestrus and thus may be responsible for selection of follicle for growth and atresia. A significant increase in the concentration of RFRP-3 during late diestrus 2 coincided with the decline in corpus luteum activity and initiation of follicular growth and selection. In general, immunolocalization of GnRH I, GnRH I-receptor and RFRP-3 were found in close vicinity suggesting functional interaction between these peptides. It is thus, hypothesized that interaction between GnRH I-RFRP-3 neuropeptides may be involved in the regulation of follicular development and atresia.
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Feb. 5, 2008, 7:10 p.m. by: hsueh   email:
home page:
last update: Oct. 17, 2018, 10:49 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form