Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

Phosphatidylinositol 3-kinase, Catalytic, Beta OKDB#: 3819
 Symbols: PIK3CB Species: human
 Synonyms: PI3K, PI3KCB, PIK3C1, PI3Kbeta, MGC133043, p110-BETA, DKFZp779K1237,PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, 110-KD, BETA|p110-BETA|PI3KCB  Locus: 3q22.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: Phosphoinositide 3-kinases (PI3Ks) phosphorylate the 3-prime OH position of the inositol ring of inositol lipids. They have been implicated as participants in signaling pathways regulating cell growth by virtue of their activation in response to various mitogenic stimuli. PI3Ks are composed of a 110-kD catalytic subunit, such as PIK3CB, and an 85-kD adaptor subunit (Hu et al., 1993 [PubMed 8246984]).[supplied by OMIM]
General function Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function
Comment Lhcgr Expression in Granulosa Cells: Roles for PKA-Phosphorylated -Catenin, TCF3, and FOXO1. Law NC 2013 et al. Ovarian follicles lacking FSH or FSH receptors fail to progress to a preovulatory stage, resulting in infertility. One hallmark of the preovulatory follicle is the presence of luteinizing hormone/choriogonadotropin receptors (LHCGR) on granulosa cells (GCs). However, the mechanisms by which FSH induces Lhcgr gene expression are poorly understood. Our results show that protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/AKT pathways are required for FSH to activate both the murine Lhcgr-luciferase reporter and expression of Lhcgr mRNA in rat GCs. Based on results showing that an adenovirus (Ad) expressing a steroidogenic factor 1 (SF1) mutant that cannot bind -catenin abolished FSH-induced Lhcgr mRNA, we evaluated the role of -catenin in the regulation of Lhcgr gene expression. FSH promoted the PKA-dependent, PI3K-independent phosphorylation of -catenin on Ser552 and Ser665. FSH activated the -catenin/T-cell factor (TCF) artificial promoter-reporter TOPFlash via a PKA-dependent, PI3K-independent pathway, and dominant-negative (DN) TCF abolished FSH-activated Lhcgr-luciferase reporter and induction of Lhcgr mRNA. Microarray analysis of GCs treated with Ad-DN-TCF and FSH identified the Lhcgr as the most down-regulated gene. Chromatin immunoprecipitation results placed -catenin phosphorylated on Ser552 and Ser675 and SF1 on the Lhcgr promoter in FSH-treated GCs; TCF3 was constitutively associated with the Lhcgr promoter. Transduction with an Ad-phospho--catenin mutant (Ser552/665/Asp) enhanced Lhcgr mRNA expression in FSH-treated cells greater than 3-fold. Finally, we identified a recognized PI3K/AKT target, forkhead box O1, as a negative regulator of Lhcgr mRNA expression. These results provide new understanding of the complex regulation of Lhcgr gene expression in GCs. /////////////////////////
Expression regulated by
Comment
Ovarian localization
Comment Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells. Chen YJ et al. Transforming growth factor (TGF) beta1 facilitates FSH-induced differentiation of rat ovarian granulosa cells. The signaling crosstalk between follicle stimulating hormone (FSH) and TGFbeta receptors remains unclear. This study was to investigate the interplay of cAMP/protein kinase A (PKA) and phosphatidylinositol-3-kinase (PI3K) signaling including mammalian target of rapamycin (mTOR)C1 dependence in FSH- and TGFbeta1-stimulated steroidogenesis in rat granulosa cells. To achieve this aim, inhibitors of PKA (PKAI), PI3K (wortmannin), and mTORC1 (rapamycin) were employed. PKAI and wortmannin suppressions of the FSH-increased progesterone production were partly attributed to decreased level of 3beta-HSD, and their suppression of the FSH plus TGFbeta1 effect was attributed to the reduction of all the three key players, steroidogenic acute regulatory (StAR) protein, P450scc, and 3beta-HSD. Further, FSH activated the PI3K pathway including increased integrin-linked kinase (ILK) activity and phosphorylation of Akt(S473), mTOR(S2481), S6K(T389), and transcription factors particularly FoxO1(S256) and FoxO3a(S253), which were reduced by wortmannin treatment but not by PKAI. Interestingly, PKAI suppression of FSH-induced phosphorylation of cAMP regulatory element-binding protein (CREB(S133)) disappeared in the presence of wortmannin, suggesting that wortmannin may affect intracellular compartmentalization of signaling molecule(s). In addition, TGFbeta1 had no effect on FSH-activated CREB and PI3K signaling mediators. We further found that rapamycin reduced the TGFbeta1-enhancing effect of FSH-stimulated steroidogenesis, yet it exhibited no effect on FSH action. Surprisingly, rapamycin displayed a suppressive effect at concentrations that had no effect on mTORC1 activity. Together, this study demonstrates a delicate interplay between cAMP/PKA and PI3K signaling in FSH and TGFbeta1 regulation of steroidogenesis in rat granulosa cells. Furthermore, we demonstrate for the first time that TGFbeta1 acts in a rapamycin-hypersensitive and mTORC1-independent manner in augmenting FSH-stimulated steroidogenesis in rat granulosa cells.
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Aug. 29, 2008, 3:36 p.m. by: hsueh   email:
home page:
last update: Aug. 8, 2013, 11:34 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form